Citation: | ZHAO Bing, LI Dan, ZHAO Feng, HU Qiushi. Crushing Characteristics of 99 Alumina Ceramics under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014104. doi: 10.11858/gywlxb.20200606 |
[1] |
GAO Y B, TANG T G, YI C H, et al. Study of static and dynamic behavior of TiB2–B4C composite [J]. Materials and Design, 2016, 92: 814–822.
|
[2] |
APPLEBY-THOMAS G J, WOOD D C, HAMEED A, et al. On the effects of powder morphology on the post-comminution ballistic strength of ceramics [J]. International Journal of Impact Engineering, 2017, 100: 46–55. doi: 10.1016/j.ijimpeng.2016.10.008
|
[3] |
MITRA E, HAZELL P J, ASHRAF M. A discrete element model to predict the pressure-density relationship of blocky and angular ceramic particles under uniaxial compression [J]. Journal of Materials Science, 2015, 50(23): 7742–7751. doi: 10.1007/s10853-015-9344-y
|
[4] |
ANDERSON JR C E, BEHNER T, ORPHAL D L, et al. Time-resolved penetration into pre-damaged hot-pressed silicon carbide [J]. International Journal of Impact Engineering, 2008, 35(8): 661–673. doi: 10.1016/j.ijimpeng.2007.12.003
|
[5] |
HORSFALL I, EDWARDS M R, HALLAS M J. Ballistic and physical properties of highly fractured alumina [J]. Advances in Applied Ceramics, 2010, 109(8): 498–503. doi: 10.1179/174367610X12804792635341
|
[6] |
NANDA H, APPLEBY-THOMAS G J, WOOD D C, et al. Ballistic behaviour of explosively shattered alumina and silicon carbide targets [J]. Advances in Applied Ceramics, 2011, 110(5): 287–292. doi: 10.1179/1743676111Y.0000000015
|
[7] |
HAZELL P J, APPLEBY-THOMAS G J, TOONE S. Ballistic compaction of a confined ceramic powder by a non-deforming projectile: experiments and simulations [J]. Materials and Design, 2014, 56: 943–952.
|
[8] |
陈小伟, 陈裕泽. 脆性陶瓷靶高速侵彻/穿甲动力学的研究进展 [J]. 力学进展, 2006, 36(1): 85–102. doi: 10.3321/j.issn:1000-0992.2006.01.014
CHEN X W, CHEN Y Z. Review on the penetration/perforation of ceramics targets [J]. Advances in Mechanics, 2006, 36(1): 85–102. doi: 10.3321/j.issn:1000-0992.2006.01.014
|
[9] |
尹志新, 李言语, 梁兴华, 等. 陶瓷/金属复合装甲抗侵彻研究进展 [J]. 四川兵工学报, 2013, 34(5): 116–119.
YIN Z X, LI Y Y, LIANG X H, et al. Research progress of ceramic/metal composite armor against ballistic penetration [J]. Journal of Sichuan Ordnance Engineering, 2013, 34(5): 116–119.
|
[10] |
陈硕, 赵忠民, 张龙. 陶瓷装甲材料动态力学研究进展 [J]. 特种铸造及有色合金, 2016, 36(4): 401–406.
CHEN S, ZHAO Z M, ZHANG L. Review on dynamic fracture of ceramics materials in armor applications [J]. Special Casting and Nonferrous Alloys, 2016, 36(4): 401–406.
|
[11] |
HAMEED A, APPLEBY-THOMAS G J, WOOD D C, et al. On the ballistic response of comminuted ceramics [J]. Journal of Physics: Conference Series, 2014, 500(11): 112005. doi: 10.1088/1742-6596/500/11/112005
|
[12] |
HUANG J, XU S, HU S. The role of contact friction in the dynamic breakage behavior of granular materials [J]. Granular Matter, 2015, 17(1): 111–120. doi: 10.1007/s10035-014-0543-z
|
[13] |
LÓPEZ-PUENTE J, ARIAS A, ZAERA R, et al. The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 321–336.
|
[14] |
ANDERSON JR C E, ROYAL-TIMMONS S A. Ballistic performance of confined 99.5%-Al2O3 ceramic tiles [J]. International Journal of Impact Engineering, 1997, 19(8): 703–713. doi: 10.1016/S0734-743X(97)00006-7
|
[15] |
SHIH C J, MEYERS M A, NESTERENKO V F. High-strain-rate deformation of granular silicon carbide [J]. Acta materialia, 1998, 46(11): 4037–4065. doi: 10.1016/S1359-6454(98)00040-8
|
[16] |
SHIH C J, NESTERENKO V F, MEYERS M A. Shear localization and comminution of granular and fragmented silicon carbide [J]. Journal de Physique IV, 1997, 7(C3): 577–582.
|
[17] |
GU Y B, RAVICHANDRAN G. Dynamic behavior of selected ceramic powders [J]. International Journal of Impact Engineering, 2006, 32(11): 1768–1785. doi: 10.1016/j.ijimpeng.2005.04.012
|
[18] |
HOGAN J D, CASTILLO J A, RAWLE A, et al. Automated microscopy and particle size analysis of dynamic fragmentation in natural ceramics [J]. Engineering Fracture Mechanics, 2013, 98: 80–91. doi: 10.1016/j.engfracmech.2012.11.021
|
[19] |
冯若琪, 朱哲明, 范勇. 砂岩半圆盘弯曲的复合型断裂性质及准则研究 [J]. 四川大学学报(工程科学版), 2016, 48(Suppl 1): 121–127.
FENG R Q, ZHU Z M, FAN Y. Research on mixed-mode fracture properties and criteria by using sandstone SCB specimen [J]. Journal of Sichuan University (Engineering Sciences Edition), 2016, 48(Suppl 1): 121–127.
|
[20] |
洪忠强. 岩石破碎度计算方法及破碎岩层分级探讨 [J]. 探矿工程, 1987(5): 57–60.
HONG Z Q. Discussion on calculation method of rock fragmentation and classification of broken rock strata [J]. Exploration Engineering, 1987(5): 57–60.
|
[21] |
章冠人. 动力破碎的几何统计和分形方法 [J]. 高压物理学报, 1996, 10(3): 56–60.
ZHANG G R. Geometrical statistics and fractal method for the fragment distribution of dynamic loading [J]. Chinese Journal of High Pressure Physics, 1996, 10(3): 56–60.
|
[22] |
郑宇轩. 韧性材料的动态碎裂特性研究[D]. 合肥: 中国科学技术大学, 2013.
ZHENG Y X. Research on dynamic fragmentation of ductile metals [D]. Hefei: University of Science and Technology of China, 2013.
|
[23] |
THEODOROU D N, SUTER U W. Shape of unperturbed linear polymers: polypropylene [J]. Macromolecules, 1985, 18(6): 1206–1214. doi: 10.1021/ma00148a028
|
[24] |
FAROOQUE T M, CAMP C H, TISON C K, et al. Measuring stem cell dimensionality in tissue scaffolds [J]. Biomaterials, 2014, 35(9): 2558–2567. doi: 10.1016/j.biomaterials.2013.12.092
|
[25] |
DRUGAN W J. Dynamic fragmentation of brittle materials: analytical mechanics-based models [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(6): 1181–1208. doi: 10.1016/S0022-5096(01)00002-3
|
[26] |
WENG L, WU Z, LIU Q, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures [J]. Engineering Fracture Mechanics, 2019, 220: 106659. doi: 10.1016/j.engfracmech.2019.106659
|
[27] |
谈瑞, 李海洋, 黄俊宇. Al2O3陶瓷动静态压缩下碎片形貌与破坏机理分析 [J]. 爆炸与冲击, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050
TAN R, LI H Y, HUANG J Y. Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression [J]. Explosion and Shock Waves, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050
|
[28] |
HAYUN S, PARIS V, DARIEL M P, et al. Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering [J]. Journal of the European Ceramic Society, 2009, 29(16): 3395–3400. doi: 10.1016/j.jeurceramsoc.2009.07.007
|
[29] |
ZHANG Z G, WANG M C, SONG S C, et al. Influence of panel/back thickness on impact damage behavior of alumina/aluminum armors [J]. Journal of the European Ceramic Society, 2010, 30(4): 875–887. doi: 10.1016/j.jeurceramsoc.2009.08.023
|
[30] |
HOLLAND C C, MCMEEKING R M. The influence of mechanical and microstructural properties on the rate-dependent fracture strength of ceramics in uniaxial compression [J]. International Journal of Impact Engineering, 2015, 81: 34–49. doi: 10.1016/j.ijimpeng.2015.02.007
|
[31] |
GRADY D E. Local inertial effects in dynamic fragmentation [J]. Journal of Applied Physics, 1982, 53(1): 322–325. doi: 10.1063/1.329934
|
[32] |
GLENN L A, CHUDNOVSKY A. Strain-energy effects on dynamic fragmentation [J]. Journal of Applied Physics, 1986, 59(4): 1379–1380. doi: 10.1063/1.336532
|
[33] |
ZHOU F H, MOLINARI J-F, RAMESH K T. Effects of material properties on the fragmentation of brittle materials [J]. International Journal of Fracture, 2006, 139(2): 169–196. doi: 10.1007/s10704-006-7135-9
|
[34] |
周风华, 郭丽娜, 王礼立. 脆性固体碎裂过程中的最快卸载特性 [J]. 固体力学学报, 2010, 31(3): 286–295.
ZHOU F H, GUO L N, WANG L L. The rapidest unloading characteristics in the fragmentation process of brittle solids [J]. Chinese Journal of Solid Mechanics, 2010, 31(3): 286–295.
|