Volume 35 Issue 1
Jan 2021
Turn off MathJax
Article Contents
ZHAO Bing, LI Dan, ZHAO Feng, HU Qiushi. Crushing Characteristics of 99 Alumina Ceramics under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014104. doi: 10.11858/gywlxb.20200606
Citation: ZHAO Bing, LI Dan, ZHAO Feng, HU Qiushi. Crushing Characteristics of 99 Alumina Ceramics under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014104. doi: 10.11858/gywlxb.20200606

Crushing Characteristics of 99 Alumina Ceramics under Different Strain Rates

doi: 10.11858/gywlxb.20200606
  • Received Date: 22 Aug 2020
  • Rev Recd Date: 15 Sep 2020
  • In this study, axial compression experiments of 99 alumina ceramics at different strain rates were carried out. After soft recovering of the fragments at the corresponding strain rates, and geometrical characterization of the specimen fragments by the sieve residue method, the fragment size distribution curves at different strain rates as well as the energy absorption process in the failure of the specimen were obtained, and the relationship between the external force of the granular ceramic and the relative crushing rate was also established. Digital image correlation (DIC) technology is used to obtain the strain field along the loading direction at different strain rates, and the failure mode is analyzed in combination with the energy absorption process and fragment grading performance. The results show that the fracture strength of 99 alumina ceramics is positively correlated with the strain rate. At the middle strain rate, the energy absorption rate has a negative correlation with the strain rate. Due to the change of the energy absorption mechanism, the sample was fractured at the beginning, but the failure mode became split-crushing mixed failure when the strain rate reached 401 s−1. With the strain rate increasing, the specimen became crushed and damaged. The average particle size decreases, the size of the fragments converges, and the influence of stress concentration gradually weakens. The relationship among energy, destruction process and fragment distribution was analyzed, and finally the fragment distribution law and fragmentation characteristics were obtained.

     

  • loading
  • [1]
    GAO Y B, TANG T G, YI C H, et al. Study of static and dynamic behavior of TiB2–B4C composite [J]. Materials and Design, 2016, 92: 814–822.
    [2]
    APPLEBY-THOMAS G J, WOOD D C, HAMEED A, et al. On the effects of powder morphology on the post-comminution ballistic strength of ceramics [J]. International Journal of Impact Engineering, 2017, 100: 46–55. doi: 10.1016/j.ijimpeng.2016.10.008
    [3]
    MITRA E, HAZELL P J, ASHRAF M. A discrete element model to predict the pressure-density relationship of blocky and angular ceramic particles under uniaxial compression [J]. Journal of Materials Science, 2015, 50(23): 7742–7751. doi: 10.1007/s10853-015-9344-y
    [4]
    ANDERSON JR C E, BEHNER T, ORPHAL D L, et al. Time-resolved penetration into pre-damaged hot-pressed silicon carbide [J]. International Journal of Impact Engineering, 2008, 35(8): 661–673. doi: 10.1016/j.ijimpeng.2007.12.003
    [5]
    HORSFALL I, EDWARDS M R, HALLAS M J. Ballistic and physical properties of highly fractured alumina [J]. Advances in Applied Ceramics, 2010, 109(8): 498–503. doi: 10.1179/174367610X12804792635341
    [6]
    NANDA H, APPLEBY-THOMAS G J, WOOD D C, et al. Ballistic behaviour of explosively shattered alumina and silicon carbide targets [J]. Advances in Applied Ceramics, 2011, 110(5): 287–292. doi: 10.1179/1743676111Y.0000000015
    [7]
    HAZELL P J, APPLEBY-THOMAS G J, TOONE S. Ballistic compaction of a confined ceramic powder by a non-deforming projectile: experiments and simulations [J]. Materials and Design, 2014, 56: 943–952.
    [8]
    陈小伟, 陈裕泽. 脆性陶瓷靶高速侵彻/穿甲动力学的研究进展 [J]. 力学进展, 2006, 36(1): 85–102. doi: 10.3321/j.issn:1000-0992.2006.01.014

    CHEN X W, CHEN Y Z. Review on the penetration/perforation of ceramics targets [J]. Advances in Mechanics, 2006, 36(1): 85–102. doi: 10.3321/j.issn:1000-0992.2006.01.014
    [9]
    尹志新, 李言语, 梁兴华, 等. 陶瓷/金属复合装甲抗侵彻研究进展 [J]. 四川兵工学报, 2013, 34(5): 116–119.

    YIN Z X, LI Y Y, LIANG X H, et al. Research progress of ceramic/metal composite armor against ballistic penetration [J]. Journal of Sichuan Ordnance Engineering, 2013, 34(5): 116–119.
    [10]
    陈硕, 赵忠民, 张龙. 陶瓷装甲材料动态力学研究进展 [J]. 特种铸造及有色合金, 2016, 36(4): 401–406.

    CHEN S, ZHAO Z M, ZHANG L. Review on dynamic fracture of ceramics materials in armor applications [J]. Special Casting and Nonferrous Alloys, 2016, 36(4): 401–406.
    [11]
    HAMEED A, APPLEBY-THOMAS G J, WOOD D C, et al. On the ballistic response of comminuted ceramics [J]. Journal of Physics: Conference Series, 2014, 500(11): 112005. doi: 10.1088/1742-6596/500/11/112005
    [12]
    HUANG J, XU S, HU S. The role of contact friction in the dynamic breakage behavior of granular materials [J]. Granular Matter, 2015, 17(1): 111–120. doi: 10.1007/s10035-014-0543-z
    [13]
    LÓPEZ-PUENTE J, ARIAS A, ZAERA R, et al. The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 321–336.
    [14]
    ANDERSON JR C E, ROYAL-TIMMONS S A. Ballistic performance of confined 99.5%-Al2O3 ceramic tiles [J]. International Journal of Impact Engineering, 1997, 19(8): 703–713. doi: 10.1016/S0734-743X(97)00006-7
    [15]
    SHIH C J, MEYERS M A, NESTERENKO V F. High-strain-rate deformation of granular silicon carbide [J]. Acta materialia, 1998, 46(11): 4037–4065. doi: 10.1016/S1359-6454(98)00040-8
    [16]
    SHIH C J, NESTERENKO V F, MEYERS M A. Shear localization and comminution of granular and fragmented silicon carbide [J]. Journal de Physique IV, 1997, 7(C3): 577–582.
    [17]
    GU Y B, RAVICHANDRAN G. Dynamic behavior of selected ceramic powders [J]. International Journal of Impact Engineering, 2006, 32(11): 1768–1785. doi: 10.1016/j.ijimpeng.2005.04.012
    [18]
    HOGAN J D, CASTILLO J A, RAWLE A, et al. Automated microscopy and particle size analysis of dynamic fragmentation in natural ceramics [J]. Engineering Fracture Mechanics, 2013, 98: 80–91. doi: 10.1016/j.engfracmech.2012.11.021
    [19]
    冯若琪, 朱哲明, 范勇. 砂岩半圆盘弯曲的复合型断裂性质及准则研究 [J]. 四川大学学报(工程科学版), 2016, 48(Suppl 1): 121–127.

    FENG R Q, ZHU Z M, FAN Y. Research on mixed-mode fracture properties and criteria by using sandstone SCB specimen [J]. Journal of Sichuan University (Engineering Sciences Edition), 2016, 48(Suppl 1): 121–127.
    [20]
    洪忠强. 岩石破碎度计算方法及破碎岩层分级探讨 [J]. 探矿工程, 1987(5): 57–60.

    HONG Z Q. Discussion on calculation method of rock fragmentation and classification of broken rock strata [J]. Exploration Engineering, 1987(5): 57–60.
    [21]
    章冠人. 动力破碎的几何统计和分形方法 [J]. 高压物理学报, 1996, 10(3): 56–60.

    ZHANG G R. Geometrical statistics and fractal method for the fragment distribution of dynamic loading [J]. Chinese Journal of High Pressure Physics, 1996, 10(3): 56–60.
    [22]
    郑宇轩. 韧性材料的动态碎裂特性研究[D]. 合肥: 中国科学技术大学, 2013.

    ZHENG Y X. Research on dynamic fragmentation of ductile metals [D]. Hefei: University of Science and Technology of China, 2013.
    [23]
    THEODOROU D N, SUTER U W. Shape of unperturbed linear polymers: polypropylene [J]. Macromolecules, 1985, 18(6): 1206–1214. doi: 10.1021/ma00148a028
    [24]
    FAROOQUE T M, CAMP C H, TISON C K, et al. Measuring stem cell dimensionality in tissue scaffolds [J]. Biomaterials, 2014, 35(9): 2558–2567. doi: 10.1016/j.biomaterials.2013.12.092
    [25]
    DRUGAN W J. Dynamic fragmentation of brittle materials: analytical mechanics-based models [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(6): 1181–1208. doi: 10.1016/S0022-5096(01)00002-3
    [26]
    WENG L, WU Z, LIU Q, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures [J]. Engineering Fracture Mechanics, 2019, 220: 106659. doi: 10.1016/j.engfracmech.2019.106659
    [27]
    谈瑞, 李海洋, 黄俊宇. Al2O3陶瓷动静态压缩下碎片形貌与破坏机理分析 [J]. 爆炸与冲击, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050

    TAN R, LI H Y, HUANG J Y. Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression [J]. Explosion and Shock Waves, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050
    [28]
    HAYUN S, PARIS V, DARIEL M P, et al. Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering [J]. Journal of the European Ceramic Society, 2009, 29(16): 3395–3400. doi: 10.1016/j.jeurceramsoc.2009.07.007
    [29]
    ZHANG Z G, WANG M C, SONG S C, et al. Influence of panel/back thickness on impact damage behavior of alumina/aluminum armors [J]. Journal of the European Ceramic Society, 2010, 30(4): 875–887. doi: 10.1016/j.jeurceramsoc.2009.08.023
    [30]
    HOLLAND C C, MCMEEKING R M. The influence of mechanical and microstructural properties on the rate-dependent fracture strength of ceramics in uniaxial compression [J]. International Journal of Impact Engineering, 2015, 81: 34–49. doi: 10.1016/j.ijimpeng.2015.02.007
    [31]
    GRADY D E. Local inertial effects in dynamic fragmentation [J]. Journal of Applied Physics, 1982, 53(1): 322–325. doi: 10.1063/1.329934
    [32]
    GLENN L A, CHUDNOVSKY A. Strain-energy effects on dynamic fragmentation [J]. Journal of Applied Physics, 1986, 59(4): 1379–1380. doi: 10.1063/1.336532
    [33]
    ZHOU F H, MOLINARI J-F, RAMESH K T. Effects of material properties on the fragmentation of brittle materials [J]. International Journal of Fracture, 2006, 139(2): 169–196. doi: 10.1007/s10704-006-7135-9
    [34]
    周风华, 郭丽娜, 王礼立. 脆性固体碎裂过程中的最快卸载特性 [J]. 固体力学学报, 2010, 31(3): 286–295.

    ZHOU F H, GUO L N, WANG L L. The rapidest unloading characteristics in the fragmentation process of brittle solids [J]. Chinese Journal of Solid Mechanics, 2010, 31(3): 286–295.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(4551) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return