Citation: | LUO Guoqiang, HUANG Zhihong, ZHANG Ruizhi, SUN Yi, ZHANG Jian, SHEN Qiang. Sound Velocity and Shock Response Behavior of Cu/PMMA Composites[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 011301. doi: 10.11858/gywlxb.20200599 |
[1] |
MEYERS M A. Dynamic behavior of materials [M]. New York: Wiley, 1994: 1−5.
|
[2] |
ZHANG Y N, ZHENG L X, SUN G Z, et al. Failure mechanisms of carbon nanotube fibers under different strain rates [J]. Carbon, 2012, 50(8): 2887–2893. doi: 10.1016/j.carbon.2012.02.057
|
[3] |
BIE B X, HAN J H, LU L, et al. Dynamic fracture of carbon nanotube/epoxy composites under high strain-rate loading [J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 282–288. doi: 10.1016/j.compositesa.2014.10.001
|
[4] |
YASHIRO S, OGI K, NAKAMURA T, et al. Characterization of high-velocity impact damage in CFRP laminates: Part I–experiment [J]. Composites Part A: Applied Science and Manufacturing, 2013, 48: 93–100. doi: 10.1016/j.compositesa.2012.12.015
|
[5] |
YASHIRO S, OGI K, YOSHIMURA A, et al. Characterization of high-velocity impact damage in CFRP laminates: Part Ⅱ - prediction by smoothed particle hydrodynamics [J]. Composites Part A: Applied Science and Manufacturing, 2014, 56: 308–318. doi: 10.1016/j.compositesa.2013.04.012
|
[6] |
XIE W B, ZHANG W, KUANG N H, et al. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere [J]. Composites Part B: Engineering, 2016, 99: 483–493. doi: 10.1016/j.compositesb.2016.06.020
|
[7] |
GAY E, BERTHE L, BOUSTIE M, et al. Study of the response of CFRP composite laminates to a laser-induced shock [J]. Composites Part B: Engineering, 2014, 64: 108–115. doi: 10.1016/j.compositesb.2014.04.004
|
[8] |
GIANNAROS E, KOTZAKOLIOS A, KOSTOPOULOS V, et al. Hypervelocity impact response of CFRP laminates using smoothed particle hydrodynamics method: implementation and validation [J]. International Journal of Impact Engineering, 2019, 123: 56–69. doi: 10.1016/j.ijimpeng.2018.09.016
|
[9] |
CHEN X, LI Y L, ZHI Z, et al. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates [J]. Carbon, 2013, 61: 97–104. doi: 10.1016/j.carbon.2013.04.073
|
[10] |
LONG X J, LI B, WANG L, et al. Shock response of Cu/graphene nanolayered composites [J]. Carbon, 2016, 103: 457–463. doi: 10.1016/j.carbon.2016.03.039
|
[11] |
XIE W B, ZHANG W, GUO L C, et al. The shock and spallation behavior of a carbon fiber reinforced polymer composite [J]. Composites Part B: Engineering, 2018, 153: 176–183. doi: 10.1016/j.compositesb.2018.07.047
|
[12] |
DANDEKAR D P, HALL C A, CHHABILDAS L C, et al. Shock response of a glass-fiber-reinforced polymer composite [J]. Composite Structures, 2003, 61(1/2): 51–59. doi: 10.1016/S0263-8223(03)00031-X
|
[13] |
JIAN W R, LONG X J, TANG M X, et al. Deformation and spallation of shock-loaded graphene: effects of orientation and grain boundary [J]. Carbon, 2018, 132: 520–528. doi: 10.1016/j.carbon.2018.02.070
|
[14] |
MENG Z X, HAN J L, QIN X, et al. Spalling-like failure by cylindrical projectiles deteriorates the ballistic performance of multi-layer graphene plates [J]. Carbon, 2018, 126: 611–619. doi: 10.1016/j.carbon.2017.10.068
|
[15] |
TIAN Y, ZHANG H, ZHAO J, et al. High strain rate compression of epoxy based nanocomposites [J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 62–70. doi: 10.1016/j.compositesa.2016.06.008
|
[16] |
REN S Y, ZHANG Q M, WU Q, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. International Journal of Impact Engineering, 2019, 130: 124–137. doi: 10.1016/j.ijimpeng.2019.04.011
|
[17] |
RAULS M B, RAVICHANDRAN G. Structure of shock waves in particulate composites [J]. Journal of Applied Physics, 2020, 127(6): 065902.
|
[18] |
LI J B, LI W B, WANG X M, et al. Shock response and prediction model of equation of state for aluminum powder/rubber matrix composites [J]. Materials and Design, 2020, 191: 108632. doi: 10.1016/j.matdes.2020.108632
|
[19] |
BEK Y K, HAMDIA K M, RABCZUK T, et al. Micromechanical model for polymeric nano-composites material based on SBFEM [J]. Composite Structures, 2018, 194: 516–526. doi: 10.1016/j.compstruct.2018.03.064
|
[20] |
REN H L, LI W, NING J G, et al. Effect of temperature on the impact ignition behavior of the aluminum/polytetrafluoroethylene reactive material under multiple pulse loading [J]. Materials and Design, 2020, 189: 108522.
|
[21] |
REN S Y, ZHANG Q M, WU Q, et al. Influence of impact-induced reaction characteristics of reactive composites on hypervelocity impact resistance [J]. Materials and Design, 2020, 192: 108722.
|
[22] |
胡昌明, 李雪梅, 彭建祥, 等. 冲击载荷下K9玻璃的光学特性 [J]. 高压物理学报, 2017, 31(5): 573–578. doi: 10.11858/gywlxb.2017.05.010
HU C M, LI X M, PENG J X, et al. Optical properties of K9 glass under shock loading [J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 573–578. doi: 10.11858/gywlxb.2017.05.010
|
[23] |
谭华. 实验冲击波物理[M]. 北京: 国防工业出版社, 2018: 281−304.
TAN H. Experimental shock wave physics [M]. Beijing: National Defense Industry Press, 2018: 281−304.
|
[24] |
CARTER W J, MARSH S P. Hugoniot equation of state of polymers [R]. New Mexico: Los Alamos National Laboratory, 1995.
|
[25] |
JORDAN J L, CASEM D, ZELLNER M. Shock response of polymethylmethacrylate [J]. Journal of Dynamic Behavior of Materials, 2016, 2(3): 372–378. doi: 10.1007/s40870-016-0071-5
|
[26] |
TSOU F K, CHOU P C. The control-volume approach to hugoniot of macroscopically homogeneous composites [J]. Journal of Composite Materials, 1970, 4(4): 526–537. doi: 10.1177/002199837000400408
|
[27] |
TORVIK P J. Shock propagation in a composite material [J]. Journal of Composite Materials, 1970, 4(3): 296–309. doi: 10.1177/002199837000400302
|
[28] |
经福谦. 实验物态方程导引[M]. 2版. 北京: 科学出版社, 1999: 95−99.
JING F Q. Introduction to experimental equation of state [M]. 2nd ed. Beijing: Science Press, 1999: 95−99.
|
[1] | ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524 |
[2] | LI Peiyun, HUANG Haijun, LI Yanli. First-Principles Calculations of the Equation of State and Sound Velocity of Fe-3.24%Si: Implications for the Composition of Earth’s Inner Core[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060101. doi: 10.11858/gywlxb.20190781 |
[3] | TAN Ye, XIAO Yuanlu, XUE Tao, LI Jun, JIN Ke. Melting of MB2 Alloy under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020106. doi: 10.11858/gywlxb.20190729 |
[4] | JIN Ke, WU Qiang, LI Jia-Bo, ZHOU Xian-Ming, YE Su-Hua, LI Jun. Simultaneous Measurement of Sound Velocity and Temperature of Single Crystal NaCl under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 707-717. doi: 10.11858/gywlxb.2017.06.005 |
[5] | LI Fang-Fei, CUI Qi-Liang, LI Min, ZHOU Qiang, ZOU Guang-Tian. Acoustic Velocity of Water under High Temperature and High Pressure: Validity of the Equation of State of Water[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 281-285 . doi: 10.11858/gywlxb.2008.03.010 |
[6] | LI Qiao-Yan, SHI Shang-Chun, YANG Jin-Wen, SUN Yue. Shock Compression Behavior of Nd2Fe14B[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 210-214 . doi: 10.11858/gywlxb.2007.02.016 |
[7] | YU Yu-Ying, TAN Hua, HU Jian-Bo, DAI Cheng-Da, MA Yun, CHEN Da-Nian. Sound Velocity Measurements for Shock-Compressed LY12 Aluminum Alloy by Using VISAR Technique[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 145-152 . doi: 10.11858/gywlxb.2006.02.006 |
[8] | BI Yan, TAN Hua, JING Fu-Qian, ZHAO Min-Guang. Electrical Conductivity Measurements for Metals under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 1-7 . doi: 10.11858/gywlxb.2003.01.001 |
[9] | MENG Chuan-Min, JIAO Rong-Zhen, SHI Shang-Chun, DONG Shi, SUN Yue, YANG Xiang-Dong, JING Fu-Qian. Theoretical Calculated Shock-Compression Properties for Liquid Helium[J]. Chinese Journal of High Pressure Physics, 2002, 16(1): 70-74 . doi: 10.11858/gywlxb.2002.01.012 |
[10] | MENG Chuan-Min, SHI Shang-Chun, DONG Shi, SUN Yue, JIAO Rong-Zhen, YANG Xiang-Dong. Theoretical Calculation for Shock Compressional Properties of Liquid Nitrogen[J]. Chinese Journal of High Pressure Physics, 2002, 16(3): 213-216 . doi: 10.11858/gywlxb.2002.03.009 |
[11] | HU Jin-Biao, TAN Hua, TANG Zhi-Ping, YANG Jia-Ling. Optical Radiation Properties of NaCl Crystal under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 277-284 . doi: 10.11858/gywlxb.2001.04.007 |
[12] | SHI Shang-Chun, DONG Shi, HUANG Yue, LIU Fu-Sheng, SUN Yue. Study on Shock Compression of Liquids Nitrogen and Carbon Monoxide[J]. Chinese Journal of High Pressure Physics, 1999, 13(4): 295-300 . doi: 10.11858/gywlxb.1999.04.010 |
[13] | SHI Shang-Chun, DONG Shi, HUANG Yue. The Experimental Technology for Shock-Compressed Liquid Gas[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 211-217 . doi: 10.11858/gywlxb.1999.03.010 |
[14] | GU Zhuo-Wei, JIN Xiao-Gang, ZHANG Qing-Fu, SUN Yue. A Set of Experimental Device of Preheating Materials under Shock Compression and Shock Response of Stainless Steel with High Temperature[J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 190-198 . doi: 10.11858/gywlxb.1998.03.005 |
[15] | WANG Jin-Gui, LI Xin-Zhu, WANG Wei, FU Qiu-Wei, WANG Xiang. Shock Compressive Properties of Three Tungsten Alloys[J]. Chinese Journal of High Pressure Physics, 1998, 12(4): 258-263 . doi: 10.11858/gywlxb.1998.04.004 |
[16] | YANG Xiang-Dong, WU Bao-Jian, XIE Wen, HU Dong, JING Fu-Qian. Theoretical Calculation for the Hugoniot Curves and Studies on the Effective Two-Body Potential of Helium[J]. Chinese Journal of High Pressure Physics, 1997, 11(3): 175-181 . doi: 10.11858/gywlxb.1997.03.003 |
[17] | HU Dong, YANG Xiang-Dong, JING Fu-Qian, WANG Yong-Guo, LI Xiao-Chang, SUN Zhu-Mei, DONG Shi, SHI Shang-Chun. Shock Compressions of Carbon and Water Mixture[J]. Chinese Journal of High Pressure Physics, 1997, 11(3): 197-202 . doi: 10.11858/gywlxb.1997.03.006 |
[18] | LIN Hua-Ling, YU Wan-Rui. A Theoretical Study on Heat Conduction Following Shock Compression[J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 49-56 . doi: 10.11858/gywlxb.1994.01.008 |
[19] | TANG Wen-Hui, ZHANG Ruo-Qi, JING Fu-Qian, HU Jin-Biao. Theoretical Studies of the Thermal Relaxation at the Materials Interface under Shock Compression[J]. Chinese Journal of High Pressure Physics, 1993, 7(4): 247-253 . doi: 10.11858/gywlxb.1993.04.002 |
[20] | GU Cheng-Gang, XIE Pan-Hai, WANG Jin-Gui, JING Fu-Qian. An Improvement on Resistance Measuring Technique of Insulant under Shock Compression[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 340-345 . doi: 10.11858/gywlxb.1988.04.008 |