Citation: | YUE Xiaoyuan, ZHANG Huisuo, HAN Xuelian, LIU Hongli, WANG Yanjie, LIU Hengzhu, LIU Pengfei, CAO Hongsong. Process of Improved Hot Mandrel for Large Length-Diameter Ratio Warhead Melting Cast[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015302. doi: 10.11858/gywlxb.20200592 |
[1] |
郑保辉, 罗观, 舒远杰, 等. 熔铸炸药研究现状与发展趋势 [J]. 化工进展, 2013, 32(6): 1341–1346.
ZHENG B H, LUO G, SHU Y J, et al. Research status and prospect of melt-cast explosive [J]. Chemical Industry and Engineering Progress, 2013, 32(6): 1341–1346.
|
[2] |
智小琦. 弹箭炸药装药技术[M]. 北京: 兵器工业出版社, 2011: 79–80.
ZHI X Q. Ammunition charging technology for ammunition [M]. Beijing: Ordnance Industry Press, 2011: 79–80.
|
[3] |
张恒志. 火炸药应用技术[M]. 北京: 北京理工大学出版社, 2010: 65–82.
ZHANG H Z. Application technology of explosives [M]. Beijing: Beijing Institute of Technology Press, 2010: 65–82.
|
[4] |
ZHU D L, ZHOU L, ZHANG X R. Rheological behavior of DNAN/HMX melt-cast explosives [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(12): 1583–1589. doi: 10.1002/prep.201900117
|
[5] |
SANHYE W, DUBOIS C, LAROCHE I, et al. Numerical modeling of the cooling cycle and associated thermal stresses in a melt explosive charge [J]. AIChE Journal, 2016, 62(10): 3797–3811. doi: 10.1002/aic.15288
|
[6] |
刘威, 曹红松. 基于灰色理论的DNAN基熔铸炸药成型工艺参数优化 [J]. 机械工程师, 2016, 3(3): 58–60. doi: 10.3969/j.issn.1002-2333.2016.03.024
LIU W, CAO H S. Parameters optimization in DANA-based melt-cast explosive based on grey theory [J]. Mechanical Engineer, 2016, 3(3): 58–60. doi: 10.3969/j.issn.1002-2333.2016.03.024
|
[7] |
王政, 芮久后, 赵雪, 等. DNAN基高致密熔铸炸药装药安全性研究 [J]. 广东化工, 2015, 42(24): 6–7, 24. doi: 10.3969/j.issn.1007-1865.2015.24.003
WANG Z, RUI J H, ZHAO X, et al. The safety analysis of high density melt-casting explosive based on DNAN [J]. Guangdong Chemical Industry, 2015, 42(24): 6–7, 24. doi: 10.3969/j.issn.1007-1865.2015.24.003
|
[8] |
王宇, 芮久后, 冯顺山. 装药缺陷对熔铸炸药爆速影响的实验研究 [J]. 北京理工大学学报, 2011, 31(7): 757–761.
WANG Y, RUI J H, FENG S S. Experimental research of the charge defects’ influence on detonation velocity of melting-cast explosive [J]. Transactions of Beijing Institute of Technology, 2011, 31(7): 757–761.
|
[9] |
冀腾宇. DNAN基熔铸炸药装药发射安全性研究[D]. 北京: 北京理工大学, 2016.
JI T Y. Research on DNAN based melt-cast explosive charge and launching safety [D]. Beijing: Beijing Institute of Technology, 2016.
|
[10] |
WANG D L, XIE Z Y, SUN W X, et al. Solidification simulation of melt-cast explosive under pressurization [J]. Material Science Forum, 2011, 704/705(1): 71–75.
|
[11] |
李敬明, 田勇, 张伟斌, 等. 炸药熔铸过程缩孔和缩松的形成与预测 [J]. 火炸药学报, 2011, 34(2): 17–20. doi: 10.3969/j.issn.1007-7812.2011.02.004
LI J M, TIAN Y, ZHANG W B, et al. Formation and prediction of shrinkage hole and shrinkage porosity in explosive during casting process [J]. Chinese Journal of Explosives & Propellants, 2011, 34(2): 17–20. doi: 10.3969/j.issn.1007-7812.2011.02.004
|
[12] |
黄勇, 郑保辉, 谢志毅, 等. 熔铸炸药加压凝固过程研究 [J]. 含能材料, 2013, 21(1): 25–29. doi: 10.3969/j.issn.1006-9941.2013.01.006
HUANG Y, ZHENG B H, XIE Z Y, et al. Pressured solidification process of melt-cast explosive [J]. Chinese Journal of Energetic Materials, 2013, 21(1): 25–29. doi: 10.3969/j.issn.1006-9941.2013.01.006
|
[13] |
田勇. 炸药熔铸成型过程监测评价及数值模拟研究[D]. 北京: 中国科学院工程热物理研究所, 2010.
TIAN Y. Process monitoring/evaluation and numerical simulation during casting explosive solidification [D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2010.
|
[14] |
蒙君煚, 张向荣, 周霖, 等. DNAN基熔铸炸药成型过程数值仿真 [J]. 兵工学报, 2013, 34(7): 810–814.
MENG J J, ZHANG X R, ZHOU L, et al. Simulation of solidification process for DNAN-based melt-cast explosives [J]. Acta Armamentarii, 2013, 34(7): 810–814.
|
[15] |
SUN D W, GARIMELLA S V, SINGH S, et al. Numerical and experimental investigation of the melt casting of explosives [J]. Propellants, Explosives, Pyrotechnics, 2018, 30(5): 369–380.
|
[16] |
张川, 余瑾. 基于ProCAST的124D型主泵泵壳铸造工艺设计及优化 [J]. 大型铸锻件, 2019, 10(1): 14–17.
ZHANG C, YU J. Casting process design and optimization of 124D main pump casing based on ProCAST [J]. Heavy Casting Forging, 2019, 10(1): 14–17.
|
[17] |
易茂光, 张明明, 冉靖, 等. 弹药熔铸装药水浴护理凝固控制技术 [J]. 兵工自动化, 2019, 38(8): 14–17.
YI M G, ZHANG M M, RAN J. Solidification control technology of melt-casting charging under water bath curing [J]. Ordnance Industry Automation, 2019, 38(8): 14–17.
|
[18] |
钟一鹏, 胡雅达, 江宏志. 国外炸药性能手册[M]. 北京: 兵器工业出版社, 1990: 117–118.
ZHONG Y P, HU Y D, JIANG H Z. Foreign explosive performance manual [M]. Beijing: Ordnance Industry Press, 1990: 117–118.
|
[19] |
苗爽, 王涛, 王玉玲. 孔洞缺陷对B炸药性能影响的理论计算 [J]. 原子与分子物理学报, 2019, 36(4): 675–681. doi: 10.3969/j.issn.1000-0364.2019.04.023
MIAO S, WANG T, WANG Y L. Theoretical calculation on effects of void defects on properties of composition B [J]. Journal of Atomic and Molecular Physics, 2019, 36(4): 675–681. doi: 10.3969/j.issn.1000-0364.2019.04.023
|
[20] |
谭彦显, 杨伟峰, 徐立华, 等. 模具材料及表面强化处理[M]. 2版. 北京: 北京理工大学出版社, 2014: 197–198.
TAN Y X, YANG W F, XU L H, et al. Mold material and surface strengthening treatment [M]. 2nd ed. Beijing: Beijing Institute of Technology Press, 2014: 197–198.
|
[21] |
刘雨荻. 凝固工艺对熔铸炸药微观结晶组织的影响研究[D]. 太原: 中北大学, 2019.
LIU Y D. Research on the effect of solidification process on the crystalline structure of melt-cast explosive [D]. Taiyuan: North University of China, 2019.
|