Volume 35 Issue 1
Jan 2021
Turn off MathJax
Article Contents
WU Ye, CHEN Xing, HUANG Haijun. Phase Transitions of α-Quartz and Coesite at High Pressures[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 011201. doi: 10.11858/gywlxb.20200587
Citation: WU Ye, CHEN Xing, HUANG Haijun. Phase Transitions of α-Quartz and Coesite at High Pressures[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 011201. doi: 10.11858/gywlxb.20200587

Phase Transitions of α-Quartz and Coesite at High Pressures

doi: 10.11858/gywlxb.20200587
  • Received Date: 07 Jul 2020
  • Rev Recd Date: 17 Jul 2020
  • Phase behaviors of α-quartz and coesite at high pressures and room temperature have been investigated by using diamond anvil cells combined with synchrotron X-ray diffraction. α-quartz undergoes a phase transition to a new phase at about 23 GPa, and the phase transition gets finished at about 44 GPa. The high-pressure phase of α-quartz can be observed up to 59 GPa. Coesite transforms to coesite-II at about 22 GPa, and coesite-II undergoes phase transitions above about 36 GPa. Crystalline phase can be observed up to 59 GPa in coesite. Different hydrostatic conditions provided by neon and argon have no crucial effect on high-pressure phase behaviors of α-quartz and coesite. These results not only clarify pressure-induced phase transition pathway of α-quartz and coesite, but also shed light on the transition mechanism of silica under high pressure.

     

  • loading
  • [1]
    HEANEY P J, PREWITT C T, GIBBS G V. Silica: physical behavior, geochemistry and materials applications [M]. Washington D.C.: Mineralogical Society of America, 1994.
    [2]
    HEMLEY R J, PREWITT C T, KINGMA K J. High-pressure behavior of silica [J]. Reviews in Mineralogy and Geochemistry, 1994, 29(1): 41–81.
    [3]
    TSUCHIDA Y, YAGI T. New pressure-induced transformations of silica at room temperature [J]. Nature, 1990, 347(6290): 267–269. doi: 10.1038/347267a0
    [4]
    HAINES J, LÉGER J M, GORELLI F, et al. Crystalline post-quartz phase in silica at high pressure [J]. Physical Review Letters, 2001, 87(15): 155503. doi: 10.1103/PhysRevLett.87.155503
    [5]
    HU Q Y, SHU J F, YANG W G, et al. Stability limits and transformation pathways of α-quartz under high pressure [J]. Physical Review B, 2017, 95(10): 104112. doi: 10.1103/PhysRevB.95.104112
    [6]
    BYKOVA E, BYKOV M, ČERNOK A, et al. Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts [J]. Nature Communications, 2018, 9(1): 4789. doi: 10.1038/s41467-018-07265-z
    [7]
    HU Q Y, SHU J F, CADIEN A, et al. Polymorphic phase transition mechanism of compressed coesite [J]. Nature Communications, 2015, 6: 6630. doi: 10.1038/ncomms7630
    [8]
    ONO S, KIKEGAWA T, HIGO Y, et al. Precise determination of the phase boundary between coesite and stishovite in SiO2 [J]. Physics of the Earth and Planetary Interiors, 2017, 264: 1–6. doi: 10.1016/j.pepi.2017.01.003
    [9]
    ČERNOK A, MARQUARDT K, CARACAS R, et al. Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation [J]. Nature Communications, 2017, 8: 15647. doi: 10.1038/ncomms15647
    [10]
    KINGMA K J, MEADE C, HEMLEY R J, et al. Microstructural observations of α-quartz amorphization [J]. Science, 1993, 259(5095): 666–669. doi: 10.1126/science.259.5095.666
    [11]
    HEMLEY R J, JEPHCOAT A P, MAO H K, et al. Pressure-induced amorphization of crystalline silica [J]. Nature, 1988, 334(6177): 52–54. doi: 10.1038/334052a0
    [12]
    KINGMA K J, HEMLEY R J, MAO H K, et al. New high-pressure transformation in α-quartz [J]. Physical Review Letters, 1993, 70(25): 3927–3930. doi: 10.1103/PhysRevLett.70.3927
    [13]
    KINGMA K J, MAO H K, HEMLEY R J. Synchrotron X-ray diffraction of SiO2 to multimegabar pressures [J]. High Pressure Research, 1996, 14(4/5/6): 363–374. doi: 10.1080/08957959608201422
    [14]
    BINGGELI N, CHELIKOWSKY J R. Elastic instability in α-quartz under pressure [J]. Physical Review Letters, 1992, 69(15): 2220–2223. doi: 10.1103/PhysRevLett.69.2220
    [15]
    CHOUDHURY N, CHAPLOT S L. Ab initio studies of phonon softening and high-pressure phase transitions of α-quartz SiO2 [J]. Physical Review B, 2006, 73(9): 094304. doi: 10.1103/PhysRevB.73.094304
    [16]
    WILLIAMS Q, HEMLEY R J, KRUGER M B, et al. High-pressure infrared sepctra of α-quartz, coesite, stishovite and silica glass [J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B12): 22157–22170. doi: 10.1029/93JB02171
    [17]
    ČERNOK A, BYKOVA E, BALLARAN T B, et al. High-pressure crystal chemistry of coesite-I and its transition to coesite-II [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2014, 229(11): 761–773. doi: 10.1515/zkri-2014-1763
    [18]
    ČERNOK A, BALLARAN T B, CARACAS R, et al. Pressure-induced phase transitions in coesite [J]. American Mineralogist, 2014, 99(4): 755–763. doi: 10.2138/am.2014.4585
    [19]
    CHEN T, WANG X B, QI X T, et al. Elasticity and phase transformation at high pressure in coesite from experiments and first-principles calculations [J]. American Mineralogist, 2016, 101(5): 1190–1196. doi: 10.2138/am-2016-5533
    [20]
    WU Y, LIU H Y, HUANG H J, et al. Pressure-induced structural modulations in coesite [J]. Physical Review B, 2018, 98(10): 104106. doi: 10.1103/PhysRevB.98.104106
    [21]
    LIU W, WU X B, LIANG Y F, et al. Multiple pathways in pressure-induced phase transition of coesite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(49): 12894–12899. doi: 10.1073/pnas.1710651114
    [22]
    MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [23]
    FEI Y W, RICOLLEAU A, FRANK M, et al. Toward an internally consistent pressure scale [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9182–9186. doi: 10.1073/pnas.0609013104
    [24]
    DERA P, ZHURAVLEV K, PRAKAPENKA V, et al. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software [J]. High Pressure Research, 2013, 33(3): 466–484. doi: 10.1080/08957959.2013.806504
    [25]
    ZHA C S, BOEHLER R, YOUNG D A, et al. The argon melting curve to very high pressures [J]. The Journal of Chemical Physics, 1986, 85(2): 1034–1036. doi: 10.1063/1.451295
    [26]
    VOS W L, SCHOUTEN J A, YOUNG D A, et al. The melting curve of neon at high pressure [J]. The Journal of Chemical Physics, 1991, 94(5): 3835–3838. doi: 10.1063/1.460683
    [27]
    KLOTZ S, CHERVIN J C, MUNSCH P, et al. Hydrostatic limits of 11 pressure transmitting media [J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075413. doi: 10.1088/0022-3727/42/7/075413
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(6313) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return