Volume 34 Issue 5
Sep 2020
Turn off MathJax
Article Contents
LIU Jing. High Pressure Diffraction Using Synchrotron Radiation[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050103. doi: 10.11858/gywlxb.20200586
Citation: LIU Jing. High Pressure Diffraction Using Synchrotron Radiation[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050103. doi: 10.11858/gywlxb.20200586

High Pressure Diffraction Using Synchrotron Radiation

doi: 10.11858/gywlxb.20200586
  • Received Date: 06 Jul 2020
  • Rev Recd Date: 14 Jul 2020
  • Publish Date: 25 Sep 2020
  • Synchrotron radiation source can offer wide-spectrum, high-energy, high-brightness, and low-emittance, which has been widely used in high pressure research. Among the X-ray techniques, the X-ray diffraction is one of the most basic and widely used experimental techniques, and is likely to remain the dominant application for high-pressure research in the future. Here the unique properties of synchrotron radiation, the basic composition of the light source, and the concepts of beam lines and experimental stations are briefly introduced. The high-pressure X-ray diffraction based on diamond anvil cells is focused. Various diffraction methods are explained, including powder diffraction, single X-ray diffraction and radial X-ray diffraction, as well as the combination with the laser heating and fast loading techniques. The equipment configuration and the capabilities of the high-pressure beamline at the Beijing Synchrotron Radiation Facility (BSRF) are also described, including the quality of radiation from 4W2 wiggler, X-ray micro-focusing, various diffraction methods and newly developed techniques. At last the opportunities brought by the construction of High Energy Photon Source (HEPS) for high pressure research are prospected.

     

  • loading
  • [1]
    阎永廉. 同步辐射光束线[M]//冼鼎昌. 北京同步辐射装置及其应用. 南宁: 广西科学技术出版社, 2016: 30–75.
    [2]
    刘鹏, 黎忠. 同步辐射探测器[M]//麦振洪. 同步辐射光源及其应用. 北京: 科学出版社, 2013: 153–172.
    [3]
    WINICK H. Properties of synchrotron radiation [M]//WINICK H, DONIACH S. Synchrotron radiation research. New York: Plenum, 1980: 11–25.
    [4]
    徐刚. 同步辐射光源[M]//冼鼎昌. 北京同步辐射装置及其应用. 南宁: 广西科学技术出版社, 2016: 9–29.
    [5]
    DING Y, HASKEL D, TSENG Y C, et al. Pressure-induced magnetic transition in manganite (La0.75Ca0.25MnO3) [J]. Physical Review Letters, 2009, 102(23): 237201. doi: 10.1103/PhysRevLett.102.237201
    [6]
    LUO S N, JENSEN B J, HOOKS D E, et al. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source [J]. Review of Scientific Instruments, 2012, 83(7): 073903. doi: 10.1063/1.4733704
    [7]
    The dynamic compression sector [EB/OL].[2020-07-21].https://dcs-aps.wsu.edu/facilities/.
    [8]
    刘景. X射线高压衍射实验站[M]//冼鼎昌. 北京同步辐射装置及其应用. 南宁: 广西科学技术出版社, 2016: 144–176.
    [9]
    LI R, LIU J, BAI L G, et al. Pressure-induced changes in the electron density distribution in α-Ge near the α-β transition [J]. Applied Physics Letters, 2015, 107(7): 072109. doi: 10.1063/1.4929368
    [10]
    VAUGHAN G B M, SCHMIDT S, POULSEN H F. Multicrystal approach to crystal structure solution and refinement [J]. Zeitschrift für Kristallographie, 2004, 219(12): 813–825. doi: 10.1524/zkri.219.12.813.55870
    [11]
    SØRENSEN H O, SCHMIDT S, WRIGHT J P, et al. Multigrain crystallography [J]. Zeitschrift für Kristallographie, 2012, 227(1): 63–78. doi: 10.1524/zkri.2012.1438
    [12]
    李蕊. 高压单晶及多晶粒衍射实验技术的发展及应用 [D]. 北京: 中国科学院大学, 2015.
    [13]
    LI R, LIU J, POPOV D, et al. Experimental observations of large changes in electron density distributions in β-Ge [J]. Physical Review B, 2019, 100(22): 224106. doi: 10.1103/PhysRevB.100.224106
    [14]
    KINSLAND G L, BASSETT W A. Modification of the diamond cell for measuring strain and the strength of materials at pressures up to 300 kilobar [J]. Review of Scientific Instruments, 1976, 47(1): 130–133. doi: 10.1063/1.1134460
    [15]
    SINGH A K. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device [J]. Journal of Applied Physics, 1993, 73(9): 4278–4286. doi: 10.1063/1.352809
    [16]
    SINGH A K, BALASINGH C, MAO H K, et al. Analysis of lattice strains measured under non-hydrostatic pressure [J]. Journal of Applied Physics, 1998, 83(12): 7567–7575. doi: 10.1063/1.367872
    [17]
    KAVNER A. Elasticity and strength of hydrous ringwoodite at high pressure [J]. Earth and Planetary Science Letters, 2003, 214(3/4): 645–654.
    [18]
    MAO H K, SHU J F, SHEN G Y, et al. Elasticity and rheology of iron above 220 GPa and the nature of the Earth’s inner core [J]. Nature, 1998, 396(6713): 741–743. doi: 10.1038/25506
    [19]
    WENK H R, ISCHIA G, NISHIYAMA N, et al. Texture development and deformation mechanisms in ringwoodite [J]. Physics of the Earth and Planetary Interiors, 2005, 152(3): 191–199. doi: 10.1016/j.pepi.2005.06.008
    [20]
    MIYAGI L, KANITPANYACHAROEN W, KAERCHER P, et al. Slip systems in MgSiO3 post-perovskite: implications for D″ anisotropy [J]. Science, 2010, 329(5999): 1639–1641. doi: 10.1126/science.1192465
    [21]
    DUFFY T S, SHEN G Y, SHU J F, et al. Elasticity, shear strength, and equation of state of molybdenum and gold from x-ray diffraction under nonhydrostatic compression to 24 GPa [J]. Journal of Applied Physics, 1999, 86(12): 6729–6735. doi: 10.1063/1.371723
    [22]
    HE D W, SHIEH S R, DUFFY T S. Strength and equation of state of boron suboxide from radial X-ray diffraction in a diamond cell under nonhydrostatic compression [J]. Physical Review B, 2004, 70(18): 184121. doi: 10.1103/PhysRevB.70.184121
    [23]
    CHE R Z, ZHOU L, ZHAO Y C, et al. Establishment of energy dispersive X-ray diffraction experimental system with synchrotron radiation under high pressure [J]. Chinese Science Bulletin, 1994, 39(22): 1877–1881.
    [24]
    刘景, 车容钲, 赵菁, 等. 北京同步辐射装置上的高温高压实验系统 [J]. 高压物理学报, 1997, 11(Suppl): 27.
    [25]
    JIN X G, ZHANG H Z, CHE R Z, et al. Isothermal equations of state for nanometer and micrometer nickel powders [J]. AIP Conference Proceedings, 1998, 429(1): 99–102. doi: 10.1063/1.55629
    [26]
    赵菁, 刘景, 杨洋, 等. 高压衍射实验中的同步辐射光束的定位 [J]. 高压物理学报, 1999, 13(4): 283–289. doi: 10.11858/gywlxb.1999.04.008

    ZHAO J, LIU J, YANG Y, et al. A method of locating the light spot of incidence synchrotron radiation in EDXRD experiment under high pressure [J]. Chinese Journal of High Pressure Physics, 1999, 13(4): 283–289. doi: 10.11858/gywlxb.1999.04.008
    [27]
    刘景, 赵菁, 车荣钲, 等. 高压下的同步辐射能量色散粉末衍射 [J]. 高压物理学报, 2000, 14(4): 247–252. doi: 10.11858/gywlxb.2000.04.002

    LIU J, ZHAO J, CHE R Z, et al. In situ energy dispersive diffraction under high pressure using synchrotron radiation [J]. Chinese Journal of High Pressure Physics, 2000, 14(4): 247–252. doi: 10.11858/gywlxb.2000.04.002
    [28]
    LIU J, ZHAO J, CHE R Z, et al. Progress in high pressure EDXD system and research at Beijing Synchrotron Radiation Facility [J]. Chinese Science Bulletin, 2000, 45(18): 1659–1662. doi: 10.1007/BF02898981
    [29]
    LIU J, CHE R Z, ZHAO J, et al. An experimental apparatus for EDXD of high pressure specimens using synchrotron radiation at BSRF [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467/468: 1069–1072. doi: 10.1016/S0168-9002(01)00726-4
    [30]
    LIU J, LI X D, LI Y C. The present status of high-pressure research at Beijing Synchrotron Radiation Facility [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 10505–10509. doi: 10.1088/0953-8984/14/44/323
    [31]
    WANG L J, CHEN L C, LI F Y, et al. Studies on CsBr with synchrotron radiation under ultrahigh pressure up to 115 GPa [J]. Chinese Physics Letters, 1998, 15(4): 284–286. doi: 10.1088/0256-307X/15/4/018
    [32]
    王莉君, 陈良辰, 李凤英, 等. 超高压下CsBr的结构与相变 [J]. 高压物理学报, 1998, 12(2): 92–96. doi: 10.11858/gywlxb.1998.02.003

    WANG L J, CHEN L C, LI F Y, et al. The structure and phase transition for CsBr under ultra-high pressure [J]. Chinese Journal of High Pressure Physics, 1998, 12(2): 92–96. doi: 10.11858/gywlxb.1998.02.003
    [33]
    刘景. 同步辐射材料结构分析高压技术[M]//麦振洪. 同步辐射光源及其应用. 北京: 科学出版社, 2013: 804–836.
    [34]
    LIU J. High pressure x-ray diffraction techniques with synchrotron radiation [J]. Chinese Physics B, 2016, 25(7): 076106. doi: 10.1088/1674-1056/25/7/076106
    [35]
    ENG P J, NEWVILLE M, RIVERS M L, et al. Dynamically figured Kirkpatrick Baez X-ray microfocusing optics [C]//Proceedings of SPIE3449, X-Ray Microfocusing: Applications and Techniques. San Diego, CA, United States: SPIE, 1998.
    [36]
    唐玲云. 压标材料状态方程的交叉验证研究[D]. 北京: 中国科学院研究生院, 2009.
    [37]
    TANG L Y, LIU L, LIU J, et al. Equation of state of tantalum up to 133 GPa [J]. Chinese Physics Letters, 2010, 27(1): 016402. doi: 10.1088/0256-307X/27/1/016402
    [38]
    LIN C L, ZHANG Y F, LIU J, et al. Pressure-induced structural change in orthorhombic perovskite GdMnO3 [J]. Journal of Physics: Condensed Matter, 2012, 24(11): 115402. doi: 10.1088/0953-8984/24/11/115402
    [39]
    李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术 [J]. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203

    LI X D, LI H, LI P S. High pressure single-crystal synchrotron X-ray diffraction technique [J]. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [40]
    李鹏善. 高压单晶衍射与电子非局域化密度研究[D]. 北京: 中国科学院高能物理研究所, 2017.
    [41]
    LI H, LI X D, HE M, et al. Indexing of multi-particle diffraction data in a high-pressure single-crystal diffraction experiments [J]. Journal of Applied Crystallography, 2013, 46(2): 387–390. doi: 10.1107/S0021889812051886
    [42]
    CHEN H, HE D, LIU J, et al. High-pressure radial X-ray diffraction study of osmium to 58 GPa [J]. The European Physical Journal B, 2010, 73(3): 321–326. doi: 10.1140/epjb/e2009-00436-4
    [43]
    白利刚. 稀土氧化物的相变与压标的状态方程[D]. 北京: 中国科学院大学, 2010.
    [44]
    XIONG L, BAI L G, LI J. Strength and equation of state of NaCl from radial x-ray diffraction [J]. Journal of Applied Physics, 2014, 115(3): 033509. doi: 10.1063/1.4862307
    [45]
    熊伦. 径向衍射技术研究材料的状态方程、强度与织构[D]. 北京: 中国科学院大学, 2014.
    [46]
    XIONG L, LIU J, BAI L G, et al. Radial x-ray diffraction of tungsten tetraboride to 86 GPa under nonhydrostatic compression [J]. Journal of Applied Physics, 2013, 113(3): 033507. doi: 10.1063/1.4775482
    [47]
    XIONG L, LIU J, ZHANG X X, et al. Radial X-ray diffraction study of the static strength and equation of state of MoB2 to 85 GPa [J]. Journal of Alloys and Compounds, 2015, 623: 442–446. doi: 10.1016/j.jallcom.2014.11.010
    [48]
    SHEN G Y, MAO H K, HEMLEY R J. Laser-heated diamond anvil cell technique: double-sided heating with multimode Nd: YAG laser [C]//1996 Advanced Materials ‘96—New Trends in High Pressure Research. Tsukuba, Japan: NIRM, NIRIM, 1996: 149.
    [49]
    SHEN G Y, RIVERS M L, WANG Y B, et al. Laser heated diamond cell system at the Advanced Photon Source for in situ x-ray measurements at high pressure and temperature [J]. Review of Scientific Instruments, 2001, 72(2): 1273–1282. doi: 10.1063/1.1343867
    [50]
    李晓东. 激光加温DAC技术及晶体结构相变研究[D]. 北京: 中国科学院高能物理研究所, 2004.
    [51]
    徐济安, 刘景, 肖万生, 等. 石墨在高压下的熔化实验[R]. 北京: 中国科学院高能物理研究所.
    [52]
    林传龙. ABO3型稀土化合物及稀土镓石榴石的高温高压结构相变[D]. 北京: 中国科学院大学, 2013.
    [53]
    LIN C L, LIU J, LIN J F, et al. Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature [J]. Inorganic Chemistry, 2013, 52(1): 431–434. doi: 10.1021/ic302245x
    [54]
    LEE G W, EVANS W J, YOO C S. Crystallization of water in a dynamic diamond-anvil cell: evidence for ice Ⅶ-like local order in supercompressed water [J]. Physical Review B, 2006, 74(13): 134112. doi: 10.1103/PhysRevB.74.134112
    [55]
    JIA R, SHAO C G, SU L, et al. Rapid compression induced solidification of bulk amorphous sulfur [J]. Journal of Physics D: Applied Physics, 2007, 40(12): 3763–3766. doi: 10.1088/0022-3727/40/12/030
    [56]
    LIN C L, SMITH J S, SINOGEIKIN S V, et al. Kinetics of the B1-B2 phase transition in KCl under rapid compression [J]. Journal of Applied Physics, 2016, 119(4): 045902. doi: 10.1063/1.4940771
    [57]
    LIN C L, YONG X, TSE J S, et al. Kinetically controlled two-step amorphization and amorphous-amorphous transition in ice [J]. Physical Review Letters, 2017, 119(13): 135701. doi: 10.1103/PhysRevLett.119.135701
    [58]
    EVANS W J, YOO C S, LEE G W, et al. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials [J]. Review of Scientific Instruments, 2007, 78(7): 073904. doi: 10.1063/1.2751409
    [59]
    SINOGEIKIN S V, SMITH J S, ROD E, et al. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells [J]. Review of Scientific Instruments, 2015, 86(7): 072209. doi: 10.1063/1.4926892
    [60]
    SMITH J S, SINOGEIKIN S V, LIN C L, et al. Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression [J]. Review of Scientific Instruments, 2015, 86(7): 072208. doi: 10.1063/1.4926887
    [61]
    CHENG H, ZHANG J R, LI Y C, et al. Convenient dynamic loading device for studying kinetics of phase transitions and metastable phases using symmetric diamond anvil cells [J]. High Pressure Research, 2018, 38(1): 32–40. doi: 10.1080/08957959.2017.1396326
    [62]
    李延春, 杨栋亮. 内部设计报告[R]. 北京: 中国科学院高能物理研究所
    [63]
    YANG D L, LIU J, LIN C L, et al. Phase transitions in bismuth under rapid compression [J]. Chinese Physics B, 2019, 28(3): 036201. doi: 10.1088/1674-1056/28/3/036201
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(28)

    Article Metrics

    Article views(8520) PDF downloads(149) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return