Citation: | YANG Ke, JIANG Sheng, YAN Shuai, ZHOU Chunyin, LI Aiguo. Application of Shanghai Synchrotron Radiation Source in High Pressure Research[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584 |
[1] |
MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Review of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007
|
[2] |
MONSERRAT B, DRUMMOND N D, DALLADAY-SIMPSON P, et al. Structure and metallicity of phase V of hydrogen [J]. Physical Review Letters, 2018, 120(25): 255701. doi: 10.1103/PhysRevLett.120.255701
|
[3] |
DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164
|
[4] |
吉诚, 李冰, 杨文革, 等. 静态超高压下氢的晶体结构实验研究 [J]. 高压物理学报, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520
JI C, LI B, YANG W G, et al. Crystallographic studies of ultra-dense solid hydrogen [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520
|
[5] |
耿华运, 孙毅. 氢的高压奇异结构与金属化 [J]. 高压物理学报, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674
GENG H Y, SUN Y. On the novel structure and metallization of hydrogen under high pressure [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674
|
[6] |
CELLIERS P M, MILLOT M, BRYGOO S, et al. Insulator-metal transition in dense fluid deuterium [J]. Science, 2018, 361(6403): 677–682. doi: 10.1126/science.aat0970
|
[7] |
SHEN G Y, MAO H K. High-pressure studies with X-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
|
[8] |
GONCHAROV A F, STRUZHKIN V V. Comment on “observation of the Wigner-Huntington transition to metallic hydrogen” [J]. Science, 2017, 357(6353): 9736.
|
[9] |
ASHCROFT N W. Condensed-matter physics: pressure for change in metals [J]. Nature, 2009, 458(7235): 158–159. doi: 10.1038/458158a
|
[10] |
HOWIE R T, GUILLAUME C L, SCHELER T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Physical Review Letters, 2012, 108(12): 125501. doi: 10.1103/PhysRevLett.108.125501
|
[11] |
MAO H K, HEMLEY R J. The high-pressure dimension in earth and planetary science [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9114–9115. doi: 10.1073/pnas.0703653104.
|
[12] |
李子军, 李岗. InAs晶体二维自旋磁极化子自陷能的磁温效应 [J]. 高压物理学报, 2005, 19(1): 45–50. doi: 10.11858/gywlxb.2005.01.009
LI Z J, LI G. Magnetic field and temperature effects on the self-trapping energy of the 2-D spin magnetopolaron in an InAs crystal [J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 45–50. doi: 10.11858/gywlxb.2005.01.009
|
[13] |
SHI J M, CUI W W, HAO J, et al. Formation of ammonia-helium compounds at high pressure [J]. Nature Communications, 2020, 11(1): 3164. doi: 10.1038/s41467-020-16835-z
|
[14] |
LOU H B, ZENG Z D, ZHANG F, et al. Two-way tuning of structural order in metallic glasses [J]. Nature Communications, 2020, 11(1): 314. doi: 10.1038/s41467-019-14129-7
|
[15] |
郜浩安, 马帅领, 包括, 等. 高硬度超导三元碳化物的高温高压合成 [J]. 高压物理学报, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633
GAO H A, MA S L, BAO K, et al. Synthesis of hard superconductive ternary transition metal carbide under high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633
|
[16] |
毕延, 经福谦. 动高压物理在地球与行星科学研究中的应用 [J]. 地学前缘, 2005, 12(1): 79–92. doi: 10.3321/j.issn:1005-2321.2005.01.012
BI Y, JING F Q. Application of dynamic high-pressure physics to Earth and Planetary Science studies [J]. Earth Science Frontiers, 2005, 12(1): 79–92. doi: 10.3321/j.issn:1005-2321.2005.01.012
|
[17] |
BASSETT W A. Diamond anvil cell, 50th birthday [J]. High Pressure Research, 2009, 29(2): 163–186. doi: 10.1080/08957950802597239
|
[18] |
DEWAELE A, LOUBEYRE P, OCCELLI F, et al. Toroidal diamond anvil cell for detailed measurements under extreme static pressures [J]. Nature Communications, 2018, 9(1): 2913. doi: 10.1038/s41467-018-05294-2
|
[19] |
LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 Mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. doi: 10.1073/pnas.1721425115
|
[20] |
JENEI Z, O’BANNON E F, WEIR S T, et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar [J]. Nature Communications, 2018, 9(1): 3563. doi: 10.1038/s41467-018-06071-x
|
[21] |
王雁宾. 地球内部物质物性的原位高温高压研究: 大体积压机与同步辐射源的结合 [J]. 地学前缘, 2006, 13(2): 1–36. doi: 10.3321/j.issn:1005-2321.2006.02.002
WANG Y B. Combining the large-volume press with synchrotron radiation: applications to in-situ studies of Earth materials under high pressure and temperature [J]. Earth Science Frontiers, 2006, 13(2): 1–36. doi: 10.3321/j.issn:1005-2321.2006.02.002
|
[22] |
彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600
PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600
|
[23] |
GUIGNARD J, CRICHTON W A. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a high pressure-high temperature deformation apparatus [J]. Review of Scientific Instruments, 2015, 86(8): 085112. doi: 10.1063/1.4928151
|
[24] |
LIU X, CHEN J L, TANG J J, et al. A large volume cubic press with a pressure-generating capability up to about 10 GPa [J]. High Pressure Research, 2012, 32(2): 239–254. doi: 10.1080/08957959.2012.657634
|
[25] |
REN D S, LI H P, SHAN S M. The application of manganin wire pressure gauges in a large volume press under high-temperature conditions [J]. High Pressure Research, 2019, 39(4): 619–627. doi: 10.1080/08957959.2019.1674297
|
[26] |
NIELSEN M B, CERESOLI D, PARISIADES P, et al. Phase stability of the SrMnO3 hexagonal perovskite system at high pressure and temperature [J]. Physical Review B, 2014, 90(21): 214101. doi: 10.1103/PhysRevB.90.214101
|
[27] |
AKAHAMA Y, KAWAMURA H. Pressure calibration of diamond anvil Raman gauge to 410 GPa [J]. Journal of Physics: Conference Series, 2010, 215: 012195. doi: 10.1088/1742-6596/215/1/012195
|
[28] |
DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
|
[29] |
王雁宾. 利用大体积压机与同步辐射进行原位高温高压研究——地球内部物质物性研究的应用 [J]. 物理, 2006, 35(7): 570–578. doi: 10.3321/j.issn:0379-4148.2006.07.010
WANG Y B. High-pressure, high-temperature research using the large-volume press combined with synchrotron radiation: applications to studies of physical properties of Earth materials [J]. Physics, 2006, 35(7): 570–578. doi: 10.3321/j.issn:0379-4148.2006.07.010
|
[30] |
ZHOU X F, MA D J, WANG L F, et al. Large-volume cubic press produces high temperatures above 4 000 Kelvin for study of the refractory materials at pressures [J]. Review of Scientific Instruments, 2020, 91(1): 015118. doi: 10.1063/1.5128190
|
[31] |
ZHANG Q C, LI R, GU X, et al. Thermal analysis of the growth process of synthetic diamond in the large volume cubic press apparatus with large deformation of high pressure cell [J]. Journal of Crystal Growth, 2015, 420: 80–83. doi: 10.1016/j.jcrysgro.2015.03.036
|
[32] |
YU T, WANG Y B, RIVERS M L, et al. An upgraded and integrated large-volume high-pressure facility at the GeoSoilEnviroCARS bending magnet beamline of the Advanced Photon Source [J]. Comptes Rendus Geoscience, 2019, 351(2/3): 269–279. doi: 10.1016/j.crte.2018.09.006
|
[33] |
MAO H K, JEPHCOAT A P, HEMLEY R J, et al. Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5 gigapascals [J]. Science, 1988, 239(4844): 1131–1134. doi: 10.1126/science.239.4844.1131
|
[34] |
WANG L, DING Y, YANG W G, et al. Nanoprobe measurements of materials at megabar pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14): 6140–6145. doi: 10.1073/pnas.1001141107
|
[35] |
徐济安, 毕延. 同步辐射X射线光源在高压科学研究中的应用 [J]. 物理, 2012, 41(4): 218–226.
XU J A, BI Y. Application of synchrotron radiation X-ray sources in high pressure research [J]. Physics, 2012, 41(4): 218–226.
|
[36] |
ANDRAULT D, ANTONANGELI D, DMITRIEV V, et al. Science under extreme conditions of pressures and temperatures at the ESRF [J]. Synchrotron Radiation News, 2013, 26(5): 39–44. doi: 10.1080/08940886.2013.832591
|
[37] |
SHEN G, PRAKAPENKA V B, ENG P J, et al. Facilities for high-pressure research with the diamond anvil cell at GSECARS [J]. Journal of Synchrotron Radiation, 2005, 12(5): 642–649. doi: 10.1107/S0909049505022442
|
[38] |
SHEN G Y, CHOW P, XIAO Y M, et al. HPCAT: an integrated high-pressure synchrotron facility at the advanced photon source [J]. High Pressure Research, 2008, 28(3): 145–162. doi: 10.1080/08957950802208571
|
[39] |
EHM L, VAUGHAN M, DUFFY T, et al. High-pressure research at the national synchrotron light source [J]. Synchrotron Radiation News, 2010, 23(3): 24–30. doi: 10.1080/08940886.2010.485520
|
[40] |
HIRAO N, KAWAGUCHI S I, HIROSE K, et al. New developments in high-pressure X-Ray diffraction beamline for diamond anvil cell at SPring-8 [J]. Matter and Radiation at Extremes, 2020, 5(1): 018403. doi: 10.1063/1.5126038
|
[41] |
LIU J. High pressure X-ray diffraction techniques with synchrotron radiation [J]. Chinese Physics B, 2016, 25(7): 076106. doi: 10.1088/1674-1056/25/7/076106
|
[42] |
HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
|
[43] |
JI C, LI B, LIU W J, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558–562. doi: 10.1038/s41586-019-1565-DOI:
|
[44] |
SUN L L, CHEN X J, GUO J, et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides [J]. Nature, 2012, 483(7387): 67–69. doi: 10.1038/nature10813
|
[45] |
GUO J, CHEN X J, DAI J H, et al. Pressure-driven quantum criticality in iron-selenide superconductors [J]. Physical Review Letters, 2012, 108(19): 197001. doi: 10.1103/PhysRevLett.108.197001
|
[46] |
ZHANG L L, YAN S, JIANG S, et al. Hard X-ray micro-focusing beamline at SSRF [J]. Nuclear Science and Techniques, 2015, 26(6): 060101. doi: 10.13538/j.1001-8042/nst.26.060101
|
[47] |
MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
|
[1] | LI Qiaoge, LIANG Zengyou, WANG Chunguang, HAO Yongqiang. Study on Anti-Fragment Impact Performance of Carbon Fiber Reinforced Plastics[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044103. doi: 10.11858/gywlxb.20240720 |
[2] | XU Hengwei, LIANG Bin, LIU Junxin, LU Yonggang, OU Xiaohong. Effect of Initiation Eccentricity on Shaped Charge Jet Forming Process and Power Parameters[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015102. doi: 10.11858/gywlxb.20220635 |
[3] | ZHANG Haoyu, ZHANG Shukai, CHENG Li, LI Yuan, WEN Yuquan. Influence of Sequential Initiation Parameters on Damage Effectiveness of Aimed Warhead[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025101. doi: 10.11858/gywlxb.20210836 |
[4] | ZHANG Guanghua, SHEN Fei, LIU Rui, WANG Hui. Influence of Detonation Modes on Energy Release Characteristics of a Charge with a Non-Circular Cross-Sectional Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035101. doi: 10.11858/gywlxb.20210894 |
[5] | SUN Yuanxiang, HU Haoliang, ZHANG Zhifan. Simulation Study on Influential Factors of EFP Underwater Forming[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557 |
[6] | XIA Binghan, WANG Jinxiang, ZHOU Nan, CHEN Xingwang, LU Fujia. Blast Wave and Time Sequence of Prefabricated Fragments for Scaled Warhead with Cylindrical Charge[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015101. doi: 10.11858/gywlxb.20190780 |
[7] | CHEN Xing, ZHOU Lanwei, LI Xiangdong, HU Zhengzhe, ZHANG Rui. Meeting Location of Fragment and Shock Wave from Blast Fragmentation Warhead[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065101. doi: 10.11858/gywlxb.20180591 |
[8] | CAO Ming-Yang, WANG Jin-Xiang, HAO Chun-Jie, SONG Hai-Ping, ZHANG Ya-Ning, ZHOU Lian, ZHOU Nan, TANG Kui. Formation and Penetration Performane of Multi-Explosviely Formed Projectiles[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 486-493. doi: 10.11858/gywlxb.2017.04.018 |
[9] | CHEN Wei, MA Hong-Hao, SHEN Zhao-Wu, XUE Bing. Numerical Simulation of Influence of Different Modes of Initiation on the Forming of Radial Shaped Jet[J]. Chinese Journal of High Pressure Physics, 2015, 29(6): 419-424. doi: 10.11858/gywlxb.2015.06.003 |
[10] | YU Chuan, WANG Wei, CHEN Hao, YU De-Shui, XIE Gang, ZHANG Zhen-Tao. Design of Explosively Formed Projectile Liner with Small Radius and Experiment of Penetrating Multi-Layer Steel Target[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 69-72. doi: 10.11858/gywlxb.2014.01.011 |
[11] | WANG Shu-You, MEN Jian-Bing, JIANG Jian-Wei. Research on Formation Process of Wrapping Explosively Formed Compound Penetrator[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 40-44. doi: 10.11858/gywlxb.2013.01.005 |
[12] | GENG Di, MA Tian-Bao, NING Jian-Guo. Study on Laws of Explosive Driven Behaviors of Aimed Warhead[J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 685-690. doi: 10.11858/gywlxb.2013.05.005 |
[13] | LI Jin-He, ZHAO Ji-Bo, TAN Duo-Wang, WANG Yan-Ping, ZHANG Yuan-Ping. Effect on the Near Field Shock Wave Pressure of Underwater Explosion of Aluminized Explosive at Different Initiation Modes[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 289-293. doi: 10.11858/gywlxb.2012.03.007 |
[14] | FAN Fei, LI Wei-Bing, WANG Xiao-Ming, LI Wen-Bin, HAN Yu. Research on the Damaging Ability of EFP Warhead at Different Incidence Angle[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 199-204. doi: 10.11858/gywlxb.2012.02.012 |
[15] | ZHENG Yu, WANG Xiao-Ming, LI Wen-Bin, LI Wei-Bing. Effects of Liner Curvature Radius on Formation of Double-Layered Spherical Segment Charge Liner into Tandem Explosively Formed Projectile (EFP)[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 229-235 . doi: 10.11858/gywlxb.2009.03.011 |
[16] | LIN Jia-Jian, REN Hui-Qi, SHEN Zhao-Wu. Numerical and Experimental Study on Explosively Formed Projectile with Fins[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 215-222 . doi: 10.11858/gywlxb.2009.03.009 |
[17] | DUAN Jian, YANG Qian-Long, ZHOU Gang, CHU Zhe, TIAN Ya-Jun, ZHANG Ying. Structural Design and Experimental Study on Forward Shaped Charge and Explosion-Proof Body for Tandem Warhead[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 202-206 . doi: 10.11858/gywlxb.2006.02.015 |
[18] | CHEN Hai-Li, JIANG Jian-Wei, MEN Jian-Bing. Numerical Simulation of Fragment Impacting on Charge with Aluminum Shell[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 109-112 . doi: 10.11858/gywlxb.2006.01.021 |
[19] | YANG Jun, JIANG Jian-Wei, MEN Jian-Bing. Numerical Simulation for Formation Flight and Penetration of Sphericity EFP[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 429-433 . doi: 10.11858/gywlxb.2006.04.015 |
[20] | PANG Yong, YU Chuan, GUI Yu-Lin. Numerical Simulation of EFP Formation with Hemispherical Liner[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 86-92 . doi: 10.11858/gywlxb.2005.01.015 |