Volume 34 Issue 6
Nov 2020
Turn off MathJax
Article Contents
WANG Hang, WANG Wenqiang. Dispersion and Dissipation Relations of One-Dimensional Viscoelastic Phononic Crystals[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 062401. doi: 10.11858/gywlxb.20200573
Citation: WANG Hang, WANG Wenqiang. Dispersion and Dissipation Relations of One-Dimensional Viscoelastic Phononic Crystals[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 062401. doi: 10.11858/gywlxb.20200573

Dispersion and Dissipation Relations of One-Dimensional Viscoelastic Phononic Crystals

doi: 10.11858/gywlxb.20200573
  • Received Date: 21 Jun 2020
  • Rev Recd Date: 15 Jul 2020
  • Issue Publish Date: 25 Aug 2020
  • Based on equations of motion and the generalized Maxwell constitutive model, this paper derives the dispersion and dissipation relations of one-dimensional viscoelastic local resonance and Bragg scattering type phononic crystals. The results show that, for the time-harmonic propagation, band gap does not exist in the dispersion relation and the attenuation of wave solely relies on viscous dissipation and periodic modulation, which will enhance the dissipation; on the contrary, for the free wave propagation, there is a band gap in the dispersion relation, but beyond the band gap, the attenuation of wave is still dependent on viscous dissipation and periodic modulation. These results are valuable for the study on stress wave propagation in layered composite materials made of polymers.

     

  • loading
  • [1]
    LUNDERGAN C D, DRUMHELLER D S. Propagation of stress waves in a laminated plate composite [J]. Journal of Applied Physics, 1971, 42(2): 669–675. doi: 10.1063/1.1660078
    [2]
    OVED Y, LUTTWAK G E, ROSENBERG Z. Shock wave propagation in layered composites [J]. Journal of Composite Materials, 1978, 12(1): 84–96. doi: 10.1177/002199837801200107
    [3]
    BENSON D J, NESTERENKO V F. Anomalous decay of shock impulses in laminated composites [J]. Journal of Applied Physics, 2001, 89(7): 3622–3626. doi: 10.1063/1.1329146
    [4]
    ZHUANG S M, RAVICHANDRAN G, GRADY D E. An experimental investigation of shock wave propagation in periodically layered composites [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(2): 245–265. doi: 10.1016/S0022-5096(02)00100-X
    [5]
    FRANCO NAVARRO P, BENSON D J, NESTERENKO V F. Nature of short, high-amplitude compressive stress pulses in a periodic dissipative laminate [J]. Physical Review E, 2015, 92(6): 062917. doi: 10.1103/PhysRevE.92.062917
    [6]
    YADAV S, RAVICHANDRAN G. Penetration resistance of laminated ceramic/polymer structures [J]. International Journal of Impact Engineering, 2003, 28(5): 557–574. doi: 10.1016/S0734-743X(02)00122-7
    [7]
    GRUJICIC M, BELL W C, PANDURANGAN B. Design and material selection guidelines and strategies for transparent armor systems [J]. Materials & Design, 2012, 34: 808–819. doi: 10.1016/j.matdes.2011.07.007
    [8]
    MINES R A W. A one-dimensional stress wave analysis of a lightweight composite armour [J]. Composite Structures, 2004, 64(1): 55–62. doi: 10.1016/S0263-8223(03)00213-7
    [9]
    HUSSEIN M I, FRAZIER M J. Band structure of phononic crystals with general damping [J]. Journal of Applied Physics, 2010, 108(9): 093506. doi: 10.1063/1.3498806
    [10]
    HUSSEIN M I, FRAZIER M J. Metadamping: an emergent phenomenon in dissipative metamaterials [J]. Journal of Sound and Vibration, 2013, 332(20): 4767–4774. doi: 10.1016/j.jsv.2013.04.041
    [11]
    LI J, CHAN C T. Double-negative acoustic metamaterial [J]. Physical Review E, 2004, 70(5): 055602. doi: 10.1103/PhysRevE.70.055602
    [12]
    LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials [J]. Science, 2000, 289(5485): 1734–1736. doi: 10.1126/science.289.5485.1734
    [13]
    DING Y Q, LIU Z Y, QIU C Y, et al. Metamaterial with simultaneously negative bulk modulus and mass density [J]. Physical Review Letters, 2007, 99(9): 093904. doi: 10.1103/PhysRevLett.99.093904
    [14]
    王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    [15]
    ZHU X Y, ZHONG S, ZHAO H D. Band gap structures for viscoelastic phononic crystals based on numerical and experimental investigation [J]. Applied Acoustics, 2016, 106: 93–104. doi: 10.1016/j.apacoust.2016.01.007
    [16]
    LEWIŃSKA M A, KOUZNETSOVA V G, VAN DOMMELEN J A W, et al. The attenuation performance of locally resonant acoustic metamaterials based on generalised viscoelastic modelling [J]. International Journal of Solids and Structures, 2017, 126/127: 163–174. doi: 10.1016/j.ijsolstr.2017.08.003
    [17]
    GUO F X, GUO H, SUN P, et al. Study on band gap properties of two-dimensional phononic crystals based on generalized viscoelastic modeling [J]. Modern Physics Letters B, 2019, 33(32): 1950403. doi: 10.1142/S0217984919504037
    [18]
    YAO S S, ZHOU X M, HU G K. Experimental study on negative effective mass in a 1D mass-spring system [J]. New Journal of Physics, 2008, 10(4): 043020. doi: 10.1088/1367-2630/10/4/043020
    [19]
    TAN K T, HUANG H H, SUN C T. Optimizing the band gap of effective mass negativity in acoustic metamaterials [J]. Applied Physics Letters, 2012, 101(24): 241902. doi: 10.1063/1.4770370
    [20]
    MEAD D J. A general theory of harmonic wave propagation in linear periodic systems with multiple coupling [J]. Journal of Sound and Vibration, 1973, 27(2): 235–260. doi: 10.1016/0022-460X(73)90064-3
    [21]
    LAZAROV B S, THOMSEN J J. Using high-frequency vibrations and non-linear inclusions to create metamaterials with adjustable effective properties [J]. International Journal of Non-Linear Mechanics, 2009, 44(1): 90–97. doi: 10.1016/j.ijnonlinmec.2008.09.001
    [22]
    HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials [J]. International Journal of Engineering Science, 2009, 47(4): 610–617. doi: 10.1016/j.ijengsci.2008.12.007
    [23]
    阎守胜. 固体物理基础[M]. 北京: 北京大学出版社, 2000.

    YAN S S. Fundamentals of solid state physics [M]. Beijing: Peking University Press, 2000.
    [24]
    HUSSEIN M I, LEAMY M J, RUZZENE M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook [J]. Applied Mechanics Reviews, 2014, 66(4): 040802. doi: 10.1115/1.4026911
    [25]
    FRAZIER M J, HUSSEIN M I. Viscous-to-viscoelastic transition in phononic crystal and metamaterial band structures [J]. The Journal of the Acoustical Society of America, 2015, 138(5): 3169–3180. doi: 10.1121/1.4934845
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(6573) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return