Volume 35 Issue 1
Jan 2021
Turn off MathJax
Article Contents
LUO Kaiwen, LI Q. M.. Damage Boundary of Crystal Oscillator under Shock Environment[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015301. doi: 10.11858/gywlxb.20200572
Citation: LUO Kaiwen, LI Q. M.. Damage Boundary of Crystal Oscillator under Shock Environment[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015301. doi: 10.11858/gywlxb.20200572

Damage Boundary of Crystal Oscillator under Shock Environment

doi: 10.11858/gywlxb.20200572
  • Received Date: 19 Jun 2020
  • Rev Recd Date: 07 Jul 2020
  • Publish Date: 25 Oct 2020
  • The surface mounted devices (SMD) crystal oscillator is widely used in various electrical and communication equipment or systems. The crystal oscillator is prone to structural damage under shock environment, which may results in abnormal operation of the system. The relationship between the level of structural stress response and the value of related shock response spectrum (SRS) is established and a more reasonable damage boundary form is obtained by analyzing the response characteristics of the single-degree-of-freedom (SDOF) system under shock loads with different frequencies. Based on the mechanical characteristics of the vulnerable component of a typical crystal oscillator, the corresponding simplified analytical model is established, and its structural damage boundary in a large frequency range is obtained. The finite element simulation software is used to simulate the response of crystal oscillator structure under shock loads within the frequency range of 0.5–30 kHz to verify the effectiveness of the structural damage boundary. This paper also provides a feasible method for the reliability study of various micro-components represented by SMD crystal oscillator under shock environment.

     

  • loading
  • [1]
    VIG J R, AUDOIN C, CUTLER L S, et al. Acceleration, vibration and shock effects-IEEE standards project P1193 [C]//Proceedings of 1992 IEEE Frequency Control Symposium. Hershey: IEEE, 1992: 763−781. DOI: 10.1109/FREQ.1992.269960.
    [2]
    FILLER R L. The acceleration sensitivity of quartz crystaloscillators: a review [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1988, 35(3): 297–305. doi: 10.1109/58.20450
    [3]
    冷国俊, 陈睿, 何著, 等. 晶振加速度敏感性矢量计算及耦合机理研究 [J]. 应用数学和力学, 2014, 35(Suppl 1): 65–69.

    LENG G J, CHEN R, HE Z, et al. Research on crystal acceleration sensitivity vectorcalculation and coupling mechanism [J]. Applied Mathematics and Mechanics, 2014, 35(Suppl 1): 65–69.
    [4]
    邱士起, 牛少华, 高世桥. 冲击载荷下石英晶体振荡器失效机理分析 [J]. 兵工学报, 2016, 37(Suppl 2): 96–100.

    QIU S Q, NIU S H, GAO S Q. Failure mechanism analysis of quartz crystal oscillators under impact load [J]. Acta Armamentarii, 2016, 37(Suppl 2): 96–100.
    [5]
    李乐, 祖静, 徐鹏. EXO3晶振与KSS晶振在高过载下的失效特性分析 [J]. 中国测试技术, 2007, 33(3): 88–90. doi: 10.3969/j.issn.1674-5124.2007.03.029

    LI L, ZU J, XU P. Failure mechanism of crystal oscillator EXO3 and KSS under high shock [J]. China Measurement Technology, 2007, 33(3): 88–90. doi: 10.3969/j.issn.1674-5124.2007.03.029
    [6]
    MOENINGC J. Pyrotechnic shock flight failures [C]//Proceedings of the 31st Annual Technical Meeting of the Institute of Environmental Sciences. Las Vegas, 1985: 4−5.
    [7]
    赵小龙, 马铁华, 范锦彪. 弹载常用芯片在高g值冲击下的失效分析 [J]. 仪器仪表学报, 2013, 34(10): 2358–2364.

    ZHAO X L, MA T H, FAN J B. Failure analysis of common missile-borne chip in high g shock [J]. Chinese Journal of Scientific Instrument, 2013, 34(10): 2358–2364.
    [8]
    鲍爱达, 陈员娥, 李长龙, 等. 弹载加速度记录仪在冲击环境下的失效研究 [J]. 振动与冲击, 2013, 32(13): 182–186, 196. doi: 10.3969/j.issn.1000-3835.2013.13.034

    BAO A D, CHEN Y E, LI C L, et al. Failure study on a missile accelerometer recorder under shock environment [J]. Journal of Vibration and Shock, 2013, 32(13): 182–186, 196. doi: 10.3969/j.issn.1000-3835.2013.13.034
    [9]
    杨磊, 秦玉浩, 蒋韦, 等. 星载高稳晶振的减振设计 [J]. 空间电子技术, 2016, 13(5): 9–13. doi: 10.3969/j.issn.1674-7135.2016.05.003

    YANG L, QIN Y H, JIANG W, et al. Vibration attenuation design of OCXO for aerospace applications [J]. Space Electronic Technology, 2016, 13(5): 9–13. doi: 10.3969/j.issn.1674-7135.2016.05.003
    [10]
    徐鹏. 高g值加速度作用下晶振的失效机理分析 [J]. 中北大学学报(自然科学版), 2010, 31(4): 424–428. doi: 10.3969/j.issn.1673-3193.2010.04.022

    XU P. Failure mechanical analysis of crystal oscillator under high g acceleration [J]. Journal of North University of China (Natural Science Edition), 2010, 31(4): 424–428. doi: 10.3969/j.issn.1673-3193.2010.04.022
    [11]
    刘晨, 张欢, 朱剑涛, 等. 航天器电子产品抗火工冲击环境设计方法 [J]. 航天器工程, 2018, 27(3): 45–51. doi: 10.3969/j.issn.1673-8748.2018.03.007

    LIU C, ZHANG H, ZHU J T, et al. Design to resist pyroshock environment for space electronic unit [J]. Spacecraft Engineering, 2018, 27(3): 45–51. doi: 10.3969/j.issn.1673-8748.2018.03.007
    [12]
    马爱军, 石蒙, 刘洪英, 等. 应用谐振装置在电动振动台上实现高量级冲击响应谱的仿真研究 [J]. 航天器环境工程, 2011, 28(5): 427–430. doi: 10.3969/j.issn.1673-1379.2011.05.004

    MA A J, SHI M, LIU H Y, et al. Simulations of high level shock response spectrum test using resonant fixtureon an electrodynamics shaker [J]. Spacecraft Environment Engineering, 2011, 28(5): 427–430. doi: 10.3969/j.issn.1673-1379.2011.05.004
    [13]
    GABERSON H A. Pseudo velocity shock spectrum rules for analysis of mechanical shock [C]//Proceedings of IMAC XXV. Orlando: Society of Experimental Mechanics, 2007: 367−402.
    [14]
    GABERSON H A. Half sine shock tests to assure machinery survival in explosive environments [EB/OL]. (2013–04–15) [2020–04–26]. http://www.vibrationdata.com/tutorials2/HSS_test.pdf.
    [15]
    IRVINE T. Shock severity limits for electronic component [EB/OL]. (2014–06–27)[2020–04–26]. http://vibrationdata.com/tutorials2/shock_severity_electronics.pdf.
    [16]
    LI B W, LI Q M. Damage boundary of structural components under shock environment [J]. International Journal of Impact Engineering, 2018, 118: 67–77. doi: 10.1016/j.ijimpeng.2018.04.002
    [17]
    ALEXANDER J E. Shock response spectrum: a primer [J]. Sound & Vibration, 2015, 43(6): 6–14.
    [18]
    SRIKAR V T, SENTURIA S D. The reliability of microelectromechanical systems (MEMS) in shock environments [J]. Journal of Microelectromechanical Systems, 2002, 11(3): 206–214. doi: 10.1109/JMEMS.2002.1007399
    [19]
    王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005: 12–20.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 12–20.
    [20]
    GABERSON H A. Shock severity estimation [J]. Sound & Vibration, 2012, 46(1): 12–20.
    [21]
    李迪. 石英晶体圆板谐振器的有限元分析及实验研究 [D]. 南京: 南京航空航天大学, 2017: 14–15.

    LI D. The finite element analysis and experiment research of circular quartz crystal resonator [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 14−15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(5981) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return