Volume 34 Issue 6
Nov 2020
Turn off MathJax
Article Contents
LIU Haowei, SU Buyun, QIU Ji, LI Zhiqiang. Numerical Simulation of Multiaxial Creep Behavior of 2D Anisotropic Cellular Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064202. doi: 10.11858/gywlxb.20200561
Citation: LIU Haowei, SU Buyun, QIU Ji, LI Zhiqiang. Numerical Simulation of Multiaxial Creep Behavior of 2D Anisotropic Cellular Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064202. doi: 10.11858/gywlxb.20200561

Numerical Simulation of Multiaxial Creep Behavior of 2D Anisotropic Cellular Materials

doi: 10.11858/gywlxb.20200561
  • Received Date: 25 May 2020
  • Rev Recd Date: 10 Jun 2020
  • Based on the Voronoi model of 2D anisotropic cellular materials, the uniaxial and multiaxial creep behaviors were systematically studied. A large number of numerical simulation results showed that the mechanical properties of the 2D anisotropic cellular materials are greatly dependent on the geometric tensile coefficient R, which represents the degree of anisotropy. Among them, the values of the parameters r1 and $\nu_{12} $ gradually increase with the increase of R, and the change rule of the parameter r2 is just the opposite. For 2D anisotropic cellular materials, with the increase of R, the uniaxial steady-state creep rate along the tensile direction increases, while the performance in the other direction decreases gradually. In addition, based on the relationship between characteristic stress and characteristic strain, a theoretical model was established, which can describe the multiaxial creep behavior of 2D anisotropic cellular materials. By comparing the prediction results of the model with the numerical simulation results of the steady-state creep rate of materials under different anisotropic degrees and loading conditions, it was found that these two agree well, which proves the validity of the theoretical model established in this paper.

     

  • loading
  • [1]
    GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Oxford: Pergamon Press, 1997.
    [2]
    ASHBY M F, EVANS A G, FLECK N A, et al. Metal foams: a design guide [J]. Applied Mechanics Reviews, 2012, 54(6): B105–B106. doi: 10.1115/1.1421119
    [3]
    ANDREWS E W, GIBSON L J, ASHBY M F. The creep of cellular solids [J]. Acta Materialia, 1999, 47(10): 2853–2863. doi: 10.1016/S1359-6454(99)00150-0
    [4]
    HODGE A M, DUNAND D C. Measurement and modeling of creep in open-cell NiAl foams [J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2353–2363. doi: 10.1007/s11661-003-0298-3
    [5]
    卢子兴, 黄纪翔, 袁泽帅. 微结构对泡沫材料蠕变性能的影响 [J]. 复合材料学报, 2016, 33(11): 2641–2648. doi: 10.13801/j.cnki.fhclxb.20160411.007

    LU Z X, HUANG J X, YUAN Z S. Influence of micro-structure on creep properties of foam materials [J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2641–2648. doi: 10.13801/j.cnki.fhclxb.20160411.007
    [6]
    WARREN W E, KRAYNIK A M. The nonlinear elastic behavior of open-cell foams [J]. Journal of Applied Mechanics, 1991, 58(2): 376–381. doi: 10.1115/1.2897196
    [7]
    ANDREWS E W, GIBSON L J. The role of cellular structure in creep of two-dimensional cellular solids [J]. Materials Science and Engineering A, 2001, 303(1/2): 120–126. doi: 10.1016/S0921-5093(00)01854-2
    [8]
    OPPENHEIMER S M, DUNAND D C. Finite element modeling of creep deformation in cellular metals [J]. Acta Materialia, 2007, 55(11): 3825–3834. doi: 10.1016/j.actamat.2007.02.033
    [9]
    HUANG J S, GIBSON L J. Creep of open-cell Voronoi foams [J]. Materials Science and Engineering A, 2003, 339(1/2): 220–226. doi: 10.1016/S0921-5093(02)00152-1
    [10]
    ZHU H X, MILLS N J. Modelling the creep of open-cell polymer foams [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(7): 1437–1457. doi: 10.1016/S0022-5096(98)00116-1
    [11]
    SU B Y, ZHOU Z W, WANG Z H, et al. Effect of defects on creep behavior of cellular materials [J]. Materials Letters, 2014, 136: 37–40. doi: 10.1016/j.matlet.2014.07.185
    [12]
    ZHOU Z W, WANG Z H, ZHAO L M, et al. Uniaxial and biaxial failure behaviors of aluminum alloy foams [J]. Composites Part B: Engineering, 2014, 61: 340–349. doi: 10.1016/j.compositesb.2013.01.004
    [13]
    TAGARIELLI V L, DESHPANDE V S, FLECK N A, et al. A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood [J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 666–686. doi: 10.1016/j.ijmecsci.2004.11.010
    [14]
    SU B Y, ZHOU Z W, SHU X F, et al. Multiaxial creep of transversely isotropic foams [J]. Materials Science and Engineering A, 2016, 658: 289–295. doi: 10.1016/j.msea.2016.02.018
    [15]
    KESLER O, CREWS L K, GIBSON L J. Creep of sandwich beams with metallic foam cores [J]. Materials Science and Engineering A, 2003, 341(1/2): 264–272. doi: 10.1016/S0921-5093(02)00239-3
    [16]
    CHEN C, FLECK N A, ASHBY M F. Creep response of sandwich beams with a metallic foam core [J]. Advanced Engineering Materials, 2002, 4(10): 777–780. doi: 10.1002/1527-2648(20021014)4:10<777::AID-ADEM777>3.0.CO;2-A
    [17]
    FAN Z G, CHEN C, LU T J. Multiaxial creep of low density open-cell foams [J]. Materials Science and Engineering A, 2012, 540: 83–88. doi: 10.1016/j.msea.2012.01.086
    [18]
    AYYAGARI R S, VURAL M. Multiaxial yield surface of transversely isotropic foams: Part Ⅰ–modeling [J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 49–67. doi: 10.1016/j.jmps.2014.10.005
    [19]
    SULLIVAN R M, GHOSN L J, LERCH B A. A general tetrakaidecahedron model for open-celled foams [J]. International Journal of Solids and Structures, 2008, 45(6): 1754–1765. doi: 10.1016/j.ijsolstr.2007.10.028
    [20]
    CHEN C, LU T J, FLECK N A. Effect of imperfections on the yielding of two-dimensional foams [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(11): 2235–2272. doi: 10.1016/S0022-5096(99)00030-(inChinese)
    [21]
    CHEN C, LU T J. A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids [J]. International Journal of Solids and Structures, 2000, 37(52): 7769–7786. doi: 10.1016/S0020-7683(00)00003-2
    [22]
    ALKHADER M, VURAL M. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(5): 871–890. doi: 10.1016/j.jmps.2008.12.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(6967) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return