Citation: | LIU Haowei, SU Buyun, QIU Ji, LI Zhiqiang. Numerical Simulation of Multiaxial Creep Behavior of 2D Anisotropic Cellular Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064202. doi: 10.11858/gywlxb.20200561 |
[1] |
GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Oxford: Pergamon Press, 1997.
|
[2] |
ASHBY M F, EVANS A G, FLECK N A, et al. Metal foams: a design guide [J]. Applied Mechanics Reviews, 2012, 54(6): B105–B106. doi: 10.1115/1.1421119
|
[3] |
ANDREWS E W, GIBSON L J, ASHBY M F. The creep of cellular solids [J]. Acta Materialia, 1999, 47(10): 2853–2863. doi: 10.1016/S1359-6454(99)00150-0
|
[4] |
HODGE A M, DUNAND D C. Measurement and modeling of creep in open-cell NiAl foams [J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2353–2363. doi: 10.1007/s11661-003-0298-3
|
[5] |
卢子兴, 黄纪翔, 袁泽帅. 微结构对泡沫材料蠕变性能的影响 [J]. 复合材料学报, 2016, 33(11): 2641–2648. doi: 10.13801/j.cnki.fhclxb.20160411.007
LU Z X, HUANG J X, YUAN Z S. Influence of micro-structure on creep properties of foam materials [J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2641–2648. doi: 10.13801/j.cnki.fhclxb.20160411.007
|
[6] |
WARREN W E, KRAYNIK A M. The nonlinear elastic behavior of open-cell foams [J]. Journal of Applied Mechanics, 1991, 58(2): 376–381. doi: 10.1115/1.2897196
|
[7] |
ANDREWS E W, GIBSON L J. The role of cellular structure in creep of two-dimensional cellular solids [J]. Materials Science and Engineering A, 2001, 303(1/2): 120–126. doi: 10.1016/S0921-5093(00)01854-2
|
[8] |
OPPENHEIMER S M, DUNAND D C. Finite element modeling of creep deformation in cellular metals [J]. Acta Materialia, 2007, 55(11): 3825–3834. doi: 10.1016/j.actamat.2007.02.033
|
[9] |
HUANG J S, GIBSON L J. Creep of open-cell Voronoi foams [J]. Materials Science and Engineering A, 2003, 339(1/2): 220–226. doi: 10.1016/S0921-5093(02)00152-1
|
[10] |
ZHU H X, MILLS N J. Modelling the creep of open-cell polymer foams [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(7): 1437–1457. doi: 10.1016/S0022-5096(98)00116-1
|
[11] |
SU B Y, ZHOU Z W, WANG Z H, et al. Effect of defects on creep behavior of cellular materials [J]. Materials Letters, 2014, 136: 37–40. doi: 10.1016/j.matlet.2014.07.185
|
[12] |
ZHOU Z W, WANG Z H, ZHAO L M, et al. Uniaxial and biaxial failure behaviors of aluminum alloy foams [J]. Composites Part B: Engineering, 2014, 61: 340–349. doi: 10.1016/j.compositesb.2013.01.004
|
[13] |
TAGARIELLI V L, DESHPANDE V S, FLECK N A, et al. A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood [J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 666–686. doi: 10.1016/j.ijmecsci.2004.11.010
|
[14] |
SU B Y, ZHOU Z W, SHU X F, et al. Multiaxial creep of transversely isotropic foams [J]. Materials Science and Engineering A, 2016, 658: 289–295. doi: 10.1016/j.msea.2016.02.018
|
[15] |
KESLER O, CREWS L K, GIBSON L J. Creep of sandwich beams with metallic foam cores [J]. Materials Science and Engineering A, 2003, 341(1/2): 264–272. doi: 10.1016/S0921-5093(02)00239-3
|
[16] |
CHEN C, FLECK N A, ASHBY M F. Creep response of sandwich beams with a metallic foam core [J]. Advanced Engineering Materials, 2002, 4(10): 777–780. doi: 10.1002/1527-2648(20021014)4:10<777::AID-ADEM777>3.0.CO;2-A
|
[17] |
FAN Z G, CHEN C, LU T J. Multiaxial creep of low density open-cell foams [J]. Materials Science and Engineering A, 2012, 540: 83–88. doi: 10.1016/j.msea.2012.01.086
|
[18] |
AYYAGARI R S, VURAL M. Multiaxial yield surface of transversely isotropic foams: Part Ⅰ–modeling [J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 49–67. doi: 10.1016/j.jmps.2014.10.005
|
[19] |
SULLIVAN R M, GHOSN L J, LERCH B A. A general tetrakaidecahedron model for open-celled foams [J]. International Journal of Solids and Structures, 2008, 45(6): 1754–1765. doi: 10.1016/j.ijsolstr.2007.10.028
|
[20] |
CHEN C, LU T J, FLECK N A. Effect of imperfections on the yielding of two-dimensional foams [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(11): 2235–2272. doi: 10.1016/S0022-5096(99)00030-(inChinese)
|
[21] |
CHEN C, LU T J. A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids [J]. International Journal of Solids and Structures, 2000, 37(52): 7769–7786. doi: 10.1016/S0020-7683(00)00003-2
|
[22] |
ALKHADER M, VURAL M. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(5): 871–890. doi: 10.1016/j.jmps.2008.12.005
|
[1] | LI Qingwen, GAO Xiang, TAN Zhenglin, ZHANG Shuaishuai, XU Kangkang, CAI Shiting. Microscopic Simulation Study on Uniaxial Compressive Creep Characteristics of Coal Samples Constrained by Different Numbers of Carbon Fiber Reinforced Polymer Strips[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 024201. doi: 10.11858/gywlxb.20240861 |
[2] | CHEN Xiaohui, LIU Lei, ZHANG Yi, LI Shourui, JING Qiumin, GAO Junjie, LI Jun. Strain Rate-Dependent Phase Transition Behavior in Silicon[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030102. doi: 10.11858/gywlxb.20240742 |
[3] | CHEN Xinkang, LI Zhiyang, LEI Jianyin, LIU Zhifang. Dynamic Response of Nacre-Like Voronoi Brick and Mortar Structure under Explosive Load[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064108. doi: 10.11858/gywlxb.20240772 |
[4] | XIANG Kaijun, DUAN Yulong, HE Guoqin, HUANG Wei. Co-Inhibition of Methane Explosion by CO2-Porous Materials[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015201. doi: 10.11858/gywlxb.20230730 |
[5] | WEI Jiawei, SHI Xiaopeng, FENG Zhenyu. Strain Rate Dependent Constitutive Model of Rubber[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024205. doi: 10.11858/gywlxb.20210815 |
[6] | XIN Jianting, XI Tao, FAN Wei, HE Weihua, LI Gang, ZHAO Yongqiang, SHUI Min, CHU Genbai. The Spallation Characteristics of Al under Ultra-High Strain Rate Loading Driven by Femtosecond Laser[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034102. doi: 10.11858/gywlxb.20210904 |
[7] | LIU Pengfei, FAN Junqi, GUO Jiaqi, ZHU Binzhong. Damage and Energy Evolution Characteristics of Granite under Triaxial Stress[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622 |
[8] | WU Xiaodong, ZHANG Haiguang, WANG Yu, MENG Xiangsheng. Dynamic Responses of Nare-Like Voronoi Structure under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559 |
[9] | LUO Guoqiang, FEI Xihuan, YU Yin, ZHANG Ruizhi, ZHANG Chengcheng, SHEN Qiang. Effect of Voids Arrangement on Behavior of PMMA Cellular Materials on Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542 |
[10] | CHEN Junxiang, GENG Huayun. Review on Evaluation of Temperature-Pressure Equation of State of Porous Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767 |
[11] | 中北大学化工与环境学院, 山西太原, 中国科技大学近代力学系, 安徽合肥. Theoretical Considerations on the Temperature Rise of Shaped Charge Particle Jet[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 877-883. doi: 10.11858/gywlxb.2013.06.013 |
[12] | CAI Jie, ZOU Yang, WAN Ming-Zhen, PENG Dong-Jin, LI Yan, GU Qian-Qian, GUAN Qing-Feng. Rapid Preparation and Characterization of the Surface Microstructures of AISI 304L Austenitic Stainless Steel by High-Current Pulsed Electron Beam[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 693-699. doi: 10.11858/gywlxb.2012.06.015 |
[13] | PANG Bao-Jun, YANG Zhen-Qi, WANG Li-Wen, CHI Run-Qiang. Dynamic Compression Properties and Constitutive Model with Strain Rate Effect of Rubber Material[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005 |
[14] | DAI Fu, GONG Zi-Zheng, HUANG Hai-Jun, CHEN Jun-Xiang, JING Fu-Qian. An Empirical Material Constant on the Hugoniot of Solids: From Comparative Study of Porous Materials[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 330-335 . doi: 10.11858/gywlxb.2003.04.015 |
[15] | SUN Yue, LIU Fu-Sheng, GAO Zhan-Peng, ZHANG Qing-Fu. p-V Characteristics of Sintered Porous Mo under Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2002, 16(2): 119-124 . doi: 10.11858/gywlxb.2002.02.006 |
[16] | SUN Chong-Feng. The Constitutive Equation of Porous Materials under Shock Wave Loading[J]. Chinese Journal of High Pressure Physics, 1997, 11(3): 234-239 . doi: 10.11858/gywlxb.1997.03.012 |
[17] | LI Xiao-Jie, ZHANG Kai. The Principle of the Explosive Welding for Multilayer Amorphous Foils[J]. Chinese Journal of High Pressure Physics, 1993, 7(3): 214-219 . doi: 10.11858/gywlxb.1993.03.008 |
[18] | SUN Chong-Feng, ZHANG Ruo-Qi. Numerical Simulation of Hot Shock Wave in Porous Aluminum[J]. Chinese Journal of High Pressure Physics, 1991, 5(2): 154-159 . doi: 10.11858/gywlxb.1991.02.012 |
[19] | LI Xiao-Jie. Approximate Calculations of Shock Adiabats for Porous Materials[J]. Chinese Journal of High Pressure Physics, 1991, 5(4): 301-306 . doi: 10.11858/gywlxb.1991.04.010 |
[20] | BAO Zhong-Xing, GU Hui-Cheng, ZHANG Zhi-Ting. Compressibility and Phase Transition of PZT-95/5 Ferroelectric Ceramics at High Pressure[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 93-96 . doi: 10.11858/gywlxb.1987.01.013 |