Citation: | QIAO Yu, CHEN Li, ZHANG Qingming, JU Yuanyuan, LU Yangyu. Dynamic Response of the Polyetherimide Sabot of a Long Rod Projectile under Bore Pressure Load[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065106. doi: 10.11858/gywlxb.20200558 |
[1] |
赵国志, 王晓鸣, 潘正伟, 等. 杆式穿甲弹设计理论 [M]. 北京: 兵器工业出版社, 1997: 1–3.
ZHAO G Z, WANG X M, PAN Z W, et al. Design theory of rod armor-piercing projectile [M]. Beijing: Ordnance Industry Press, 1997: 1–3.
|
[2] |
王迎春, 王洁, 管维乐. 穿甲弹的现状及发展趋势研究 [J]. 飞航导弹, 2013, 43(1): 48–52.
WANG Y C, WANG J, GUAN W L. Research on current situation and development trend of armor-piercing projectile [J]. Aerodynamic Missile Journal, 2013, 43(1): 48–52.
|
[3] |
杨淑丽. 塑料及复合材料弹托 [J]. 弹箭技术, 1998(2): 42–45.
YANG S L. Plastic and composite material sabot [J]. Projectile and Rocket Technology, 1998(2): 42–45.
|
[4] |
张文栓, 蒋文玲, 吴忠泉, 等. S-2玻纤增强树脂基复合材料弹托的试验研究 [J]. 兵工学报, 2000, 21(1): 77–79. doi: 10.3321/j.issn:1000-1093.2000.01.022
ZHANG W S, JIANG W L, WU Z Q, et al. An experimental study sabots made of S-2 glass fiber reinforced composites [J]. Acta Armamentarii, 2000, 21(1): 77–79. doi: 10.3321/j.issn:1000-1093.2000.01.022
|
[5] |
秦长虎, 杨艺竹. 关于脱壳穿甲弹弹托材料发展方向的探讨 [J]. 兵器材料科学与工程, 2001, 24(3): 69–71. doi: 10.3969/j.issn.1004-244X.2001.03.019
QIN C H, YANG Y Z. Study on development trend of APDS sabot material [J]. Ordnance Material Science and Engineering, 2001, 24(3): 69–71. doi: 10.3969/j.issn.1004-244X.2001.03.019
|
[6] |
佟文敏, 赵国志. 复合材料弹托结构的发射强度计算分析 [C]//中国兵工学会弹药学术年会. 张家界, 1998: 118–123.
TONG W M, ZHAO G Z. Calculation and analysis of launching strength of composite material sabot structure [C]//China Ordnance Society Ammunition Academic Annual Meeting. Zhangjiajie, 1998: 118–123.
|
[7] |
BURNS B P, DRYSDALE W H, HOPPEL C P R, et al. The development of composite sabots for kinetic energy projectiles [C]//19th International Symposium of Ballistics. Switzerland, 2001: 347–353.
|
[8] |
唐蜜, 沈培辉, 李平, 等. 间隙啮合技术在大威力穿甲弹上的应用 [J]. 弹道学报, 2006, 18(3): 84–86. doi: 10.3969/j.issn.1004-499X.2006.03.021
TANG M, SHEN P H, LI P, et al. Application of interval meshing technology to the high power armor piercing projectiles [J]. Journal of Ballistics, 2006, 18(3): 84–86. doi: 10.3969/j.issn.1004-499X.2006.03.021
|
[9] |
刘世国. 某异形穿甲弹强度与模态分析及结构优化 [D]. 南京: 南京理工大学, 2009: 47–68.
LIU S G. Strength and modal analysis and structural optimization of a special-shaped armor-piercing projectile [D]. Nanjing: Nanjing University of Science and Technology, 2009: 47–68.
|
[10] |
闫季华. 尼龙弹托结构尾翼稳定脱壳穿甲弹 [D]. 南京: 南京理工大学, 2010: 11–39.
YAN J H. Nylon sabot structure of the armor-piercing fin-stabilized discarding-sabot projectile [D]. Nanjing: Nanjing University of Science and Technology, 2010: 11–39.
|
[11] |
WANG C K, CHEN G, LU D X, et al. Emission intensity of composite material sabot after material deletion using ABAQUS [C]//Mechanics and Mechanical Engineering: Proceedings of the 2015 International Conference. Chengdu, 2016: 671–677.
|
[12] |
苑明华. 小口径全塑弹总体设计分析 [D]. 南京: 南京理工大学, 2004: 27–35.
YUAN M H. Analysis of overall design of small caliber full plastic projectile [D]. Nanjing: Nanjing University of Science and Technology, 2004: 27–35.
|
[13] |
王秦安. 长杆式尾翼稳定脱壳穿甲弹结构强度的有限元计算方法及计算分析 [J]. 弹箭与制导学报, 1989(2): 7–19.
WANG Q A. Finite element calculation method and calculation analysis of the structural strength of the armor-piercing fin-stabilized discarding-sabot projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 1989(2): 7–19.
|
[14] |
钱民刚. 联合计算穿甲弹弹体与弹托的应力及变形 [J]. 兵工学报, 1986(3): 28–34.
QIAN M G. Combined calculation of deformation and stress for the body and the sabot of an APFSDS [J]. Acta Armamentarii, 1986(3): 28–34.
|
[15] |
沈观林, 胡更开. 复合材料力学 [M]. 2版. 北京: 清华大学出版社, 2013: 86–94.
SHEN G L, HU G K. Composite material mechanics [M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 86–94.
|
[1] | HUANG Min, ZHU Benhao, XIAO Gesheng, QIAO Li. Simulation on Deformation Damage and Strain Rate Effect of Nb3Sn Composite Superconductors under Cycling Load at Extreme Low Temperature[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 024201. doi: 10.11858/gywlxb.20230755 |
[2] | NIE Feiqing, MA Ruiqiang, LI Zhiqiang. Compressive Properties of Ice Containing Cotton at Low Strain Rates[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034104. doi: 10.11858/gywlxb.20230608 |
[3] | YE Changqing, CHEN Ran, LIU Guisen, LIU Jingnan, HU Jianbo, YU Yuying, WANG Dong, CHEN Kaiguo, SHEN Yao. Crystal Plasticity Finite Element Simulation of Polycrystal Aluminum under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064203. doi: 10.11858/gywlxb.20220605 |
[4] | ZHANG Xihuang, LI Jinzhu, WU Haijun, HUANG Fenglei. Mechanical Behavior and Failure Mechanism of Glass Fiber Reinforced Plastics under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064105. doi: 10.11858/gywlxb.20210734 |
[5] | WEN Yanbo, HUANG Ruiyuan, LI Ping, MA Jian, XIAO Kaitao. Damage Evolution Equation of Concrete Materials at High Temperatures and High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024103. doi: 10.11858/gywlxb.20200617 |
[6] | LIU Jingnan, YE Changqing, LIU Guisen, SHEN Yao. Crystal Plasticity Finite Element Theoretical Models and Applications for High Temperature, High Pressure and High Strain-Rate Dynamic Process[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874 |
[7] | MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827 |
[8] | ZHENG Songlin. Advances in the Study of Dynamic Response of Crystalline Materials by Crystal Plasticity Finite Element Modeling[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030108. doi: 10.11858/gywlxb.20190725 |
[9] | LIU Jingnan, YE Changqing, CHEN Kaiguo, YU Yuying, SHEN Yao. Crystal Plasticity Finite Element Simulation of High-Rate Shock Deformation Process of <100> LiF[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014101. doi: 10.11858/gywlxb.20180551 |
[10] | SONG Min, WANG Zhiyong, YAN Xiaopeng, WANG Zhihua. Numerical Simulation of Responses and Failure Modes of Reinforced Concrete Beams under Drop-Weight Impact Loadings[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 034102. doi: 10.11858/gywlxb.20170693 |
[11] | GAO Guang-Fa. Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007 |
[12] | GAO Guang-Fa. Hardening Effect of the Strain Rate on the Dynamic Tensile Strength of the Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013 |
[13] | WANG Peng-Fei, XU Song-Lin, HU Shi-Sheng. A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004 |
[14] | QI Juan, MU Chao-Min. Water Jet Impact on Coal Using Smoothed Particle Hydrodynamics Coupling Standard Finite Element[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 365-372. doi: 10.11858/gywlxb.2014.03.016 |
[15] | JI Chong, LONG Yuan, TANG Xian-Shu, GAO Zhen-Ru, LI Yu-Chun. Local Damage Effects of X70 Steel Pipe Subjected to Contact Explosion Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 567-574. doi: 10.11858/gywlxb.2013.04.016 |
[16] | PANG Bao-Jun, YANG Zhen-Qi, WANG Li-Wen, CHI Run-Qiang. Dynamic Compression Properties and Constitutive Model with Strain Rate Effect of Rubber Material[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005 |
[17] | DENG Rong-Bing, JIN Xian-Long, CHEN Jun, SHEN Jian-Qi, CHEN Xiang-Dong. Application of ALE Multi-Material Formulation for Blast Analysis of Glass Curtain Wall[J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 81-87 . doi: 10.11858/gywlxb.2010.02.001 |
[18] | FU Hua, LIU Cang-Li, WANG Wen-Qiang, LI Tao. A Combined Discrete/Finite Element Method in Shock Dynamics[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 379-385 . doi: 10.11858/gywlxb.2006.04.007 |
[19] | PENG Jian-Xiang, LI Da-Hong. The Influence of Temperature and Strain Rate on the Flow Stress of Tantalum[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 146-150 . doi: 10.11858/gywlxb.2001.02.012 |
[20] | LIN Hua-Ling. Simulation of Shock Compression Behavior of Mixture by Using the Finite Element Method[J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 40-46 . doi: 10.11858/gywlxb.1998.01.007 |