Citation: | LI Xiaodong, YUAN Qingxi, XU Wei, ZHENG Lirong. Introduction of Fourth-Generation High Energy Photon Source HEPS and the Beamlines for High-Pressure Research[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554 |
[1] |
HEMLEY R J. Effects of high pressure on molecules [J]. Annual Review of Physical Chemistry, 2000, 51: 763–800. doi: 10.1146/annurev.physchem.51.1.763
|
[2] |
SHEN G Y, MAO H K. High-pressure studies with x-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
|
[3] |
MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90: 015007. doi: 10.1103/RevModPhys.90.015007
|
[4] |
ASHCROFT N W. Condensed-matter physics: pressure for change in metals [J]. Nature, 2009, 458(7235): 158–159. doi: 10.1038/458158a
|
[5] |
MCMILLAN P F. Chemistry at high pressure [J]. Chemical Society Reviews, 2006, 35(10): 855–857. doi: 10.1039/B610410J
|
[6] |
MCMILLAN P F. New materials from high-pressure experiments [J]. Nature Materials, 2002, 1(1): 19–25. doi: 10.1038/nmat716
|
[7] |
MAO H K, HEMLEY R J. The high-pressure dimension in earth and planetary science [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9114–9115. doi: 10.1073/pnas.0703653104
|
[8] |
LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. doi: 10.1073/pnas.1721425115
|
[9] |
JENEI Z, O’BANNON E F, WEIR S T, et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar [J]. Nature Communications, 2018, 9: 3563. doi: 10.1038/s41467-018-06071-x
|
[10] |
徐济安, 毕延. 同步辐射X射线光源在高压科学研究中的应用 [J]. 物理, 2012, 41(4): 218–226.
XU J A, BI Y. Application of synchrotron radiation X-ray sources in high pressure research [J]. Physics, 2012, 41(4): 218–226.
|
[11] |
LIU J. High pressure X-ray diffraction techniques with synchrotron radiation [J]. Chinese Physics B, 2016, 25(7): 076106. doi: 10.1088/1674-1056/25/7/076106
|
[12] |
王其武, 刘文汉. X射线吸收精细结构及其应用[M]. 北京: 科学出版社, 1994: 32–35.
WANG Q W, LIU W H. X-ray absorption fine structure and it’s application [M]. Beijing: Science Press, 1994: 32–35.
|
[13] |
CALVIN S. XAFS for everyone [M]. Boca Raton: Taylor & Francis, 2013: 20–21.
|
[14] |
CHEN J H, DUFFY T S, DOBRZHINETSKAYA L F, et al. Advances in high-pressure technology for geophysical applications [M]. Amsterdam: Elsevier, 2005: 397–411.
|
[15] |
STERNEMANN C, WILKE M. Spectroscopy of low and intermediate Z elements at extreme conditions: in situ studies of earth materials at pressure and temperature via X-ray raman scattering [J]. High Pressure Research, 2016, 36(3): 275–292. doi: 10.1080/08957959.2016.1198903
|
[16] |
侯琪玥, 敬秋民, 张毅, 等. 基于同步辐射的X射线成像技术在静高压研究中的应用 [J]. 高压物理学报, 2016, 30(6): 537–547. doi: 10.11858/gywlxb.2016.06.016
HOU Q Y, JING Q M, ZHANG Y, et al. Applications of synchrotron X-ray imaging techniques in high static pressure researches [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 537–547. doi: 10.11858/gywlxb.2016.06.016
|
[17] |
HETTEL R. The advanced photon source upgrade plan approved [J]. Synchrotron Radiation News, 2019, 32(2): 34–35. doi: 10.1080/08940886.2019.1582289
|
[18] |
DIMPER R, REICHERT H, RAIMONDI P, et al. ESRF upgrade programme phase Ⅱ (2015 - 2022) technical design study [R]. France: ESRF, 2014.
|
[19] |
TANAKA H, ISHIKAWA T, GOTO S, et al. SPring-8 upgrade project [C]//Proceedings of the 7th International Particle Accelerator Conference. Busan: INSPIRE, 2016: 2867–2870.
|
[20] |
SCHROER C G, AGAPOV I, BREFELD W, et al. PETRA IV: the ultralow-emittance source project at DESY [J]. Journal of Synchrotron Radiation, 2018, 25: 1277–1290. doi: 10.1107/S1600577518008858
|
[21] |
JIAO Y, XU G, CUI X H, et al. The HEPS project [J]. Journal of Synchrotron Radiation, 2018, 25: 1611–1618. doi: 10.1107/S1600577518012110
|
[22] |
TAO Y. Groundbreaking ceremony at the high energy photon source in Beijing [J]. Synchrotron Radiation News, 2019, 32(5): 40. doi: 10.1080/08940886.2019.1654833
|
[23] |
SHEN G, PRAKAPENKA V B, ENG P J, et al. Facilities for high-pressure research with the diamond anvil cell at GSECARS [J]. Journal of Synchrotron Radiation, 2005, 12: 642–649. doi: 10.1107/S0909049505022442
|
[24] |
SHEN G Y, CHOW P, XIAO Y M, et al. HPCAT: an integrated high-pressure synchrotron facility at the advanced photon source [J]. High Pressure Research, 2008, 28(3): 145–162. doi: 10.1080/08957950802208571
|
[25] |
ANDRAULT D, ANTONANGELI D, DMITRIEV V, et al. Science under extreme conditions of pressures and temperatures at the ESRF [J]. Synchrotron Radiation News, 2013, 26(5): 39–44. doi: 10.1080/08940886.2013.832591
|
[26] |
HIRAO N, KAWAGUCHI S I, HIROSE K, et al. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8 [J]. Matter and Radiation at Extremes, 2020, 5(1): 018403. doi: 10.1063/1.5126038
|
[27] |
LIERMANN H P, KONÔPKOVÁ Z, MORGENROTH W, et al. The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA Ⅲ [J]. Journal of Synchrotron Radiation, 2015, 22: 908–924. doi: 10.1107/S1600577515005937
|
[28] |
XU W. Nuclear resonant scattering program in China: opportunities and challenges at the high energy photon source in Huairou [J]. Mössbauer Effect Reference and Data Journal, 2017, 40: 213–218.
|
[29] |
MAO H K, XU J, STRUZHKIN V V, et al. Phonon density of states of iron up to 153 gigapascals [J]. Science, 2001, 292(5518): 914–916. doi: 10.1126/science.1057670
|
[30] |
LIU J, HU Q Y, KIM D Y, et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones [J]. Nature, 2017, 551(7681): 494–497. doi: 10.1038/nature24461
|
[31] |
KUPENKO I, APRILIS G, VASIUKOV D M, et al. Magnetism in cold subducting slabs at mantle transition zone depths [J]. Nature, 2019, 570(7759): 102–106. doi: 10.1038/s41586-019-1254-8
|
[32] |
WU J J, LIN J F, WANG X C, et al. Pressure-decoupled magnetic and structural transitions of the parent compound of iron-based 122 superconductors BaFe2As2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(43): 17263–17266. doi: 10.1073/pnas.1310286110
|
[33] |
TROYAN I, GAVRILIUK A, RÜFFER R, et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering [J]. Science, 2016, 351(6279): 1303–1306. doi: 10.1126/science.aac8176
|
[34] |
BI W, SOUZA-NETO N M, HASKEL D, et al. Synchrotron x-ray spectroscopy studies of valence and magnetic state in europium metal to extreme pressures [J]. Physical Review B, 2012, 85(20): 205134. doi: 10.1103/PhysRevB.85.205134
|
[35] |
BI W, LIM J, FABBRIS G, et al. Magnetism of europium under extreme pressures [J]. Physical Review B, 2016, 93(18): 184424. doi: 10.1103/PhysRevB.93.184424
|
[36] |
CAI Y Q, MAO H K, CHOW P C, et al. Ordering of hydrogen bonds in high-pressure low-temperature H2O [J]. Physical Review Letters, 2005, 94(2): 025502. doi: 10.1103/PhysRevLett.94.025502
|
[37] |
SHIEH S R, JARRIGE I, WU M, et al. Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18402–18406. doi: 10.1073/pnas.1305116110
|
[38] |
LEE S K, KIM Y H, YI Y S, et al. Oxygen quadclusters in SiO2 glass above megabar pressures up to 160 GPa revealed by X-ray Raman scattering [J]. Physical Review Letters, 2019, 123(23): 235701. doi: 10.1103/PhysRevLett.123.235701
|
[39] |
CHEN B J, PARSCHKE E M, CHEN W C, et al. Probing cerium 4f states across the volume collapse transition by X-ray Raman scattering [J]. The Journal of Physical Chemistry Letters, 2019, 10(24): 7890–7897. doi: 10.1021/acs.jpclett.9b02819
|
[40] |
MEIRER F, CABANA J, LIU Y, et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy [J]. Journal of Synchrotron Radiation, 2011, 18(5): 773–781. doi: 10.1107/S0909049511019364
|
[41] |
LIU H Z, WANG L H, XIAO X H, et al. Anomalous high-pressure behavior of amorphous selenium from synchrotron x-ray diffraction and microtomography [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13229–13234. doi: 10.1073/pnas.0806857105
|
[42] |
XIAO X H, LIU H Z, WANG L H, et al. Density measurement of samples under high pressure using synchrotron microtomography and diamond anvil cell techniques [J]. Journal of Synchrotron Radiation, 2010, 17(3): 360–366. doi: 10.1107/S0909049510008502
|
[43] |
WANG J Y, YANG W G, WANG S, et al. High pressure nano-tomography using an iterative method [J]. Journal of Applied Physics, 2012, 111(11): 112626. doi: 10.1063/1.4726249
|
[44] |
LIN Y, ZENG Q S, YANG W G, et al. Pressure-induced densification in GeO2 glass: a transmission x-ray microscopy study [J]. Applied Physics Letters, 2013, 103(26): 261909. doi: 10.1063/1.4860993
|
[45] |
ZENG Q S, KONO Y, LIN Y, et al. Universal fractional noncubic power law for density of metallic glasses [J]. Physical Review Letters, 2014, 112(18): 185502. doi: 10.1103/PhysRevLett.112.185502
|
[46] |
KATAYAMA Y, INAMURA Y, MIZUTANI T, et al. Macroscopic separation of dense fluid phase and liquid phase of phosphorus [J]. Science, 2004, 306(5697): 848–851. doi: 10.1126/science.1102735
|
[47] |
LIU Y J, WANG J Y, AZUMA M, et al. Five-dimensional visualization of phase transition in BiNiO3 under high pressure [J]. Applied Physics Letters, 2014, 104(4): 043108. doi: 10.1063/1.4863229
|
[48] |
ZHU W L, GAETANI G A, FUSSEIS F, et al. Microtomography of partially molten rocks: three-dimensional melt distribution in mantle peridotite [J]. Science, 2011, 332(6025): 88–91. doi: 10.1126/science.1202221
|
[49] |
SHI C Y, ZHANG L, YANG W G, et al. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions [J]. Nature Geoscience, 2013, 6(11): 971–975. doi: 10.1038/ngeo1956
|
[50] |
YUAN Q X, ZHANG K, HUANG W X, et al. Conceptual design of TXM beamline at high energy photon source [J]. AIP Conference Proceedings, 2019, 2054(1): 050002. doi: 10.1063/1.5084620
|
[1] | CUI Kaijie, WANG Jiangang, WANG Hefeng, XING Xuegang, XIAO Gesheng, JIA Yiwei. Preparation, Microstructure and Mechanical Properties of Mo and Cocrfenimn High Entropy Alloy Hard Coating Layer[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240966 |
[2] | LI Yishuo, WANG Wei, XU Zhaowei, ZHANG Congkun, ZHANG Zhonghao, ZHANG Qiang. Close-Range Blast Resistance and Analytical Methods of Polyurea Coated Masonry Infill Walls with Built-in Tie Reinforcement[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 034202. doi: 10.11858/gywlxb.20240892 |
[3] | JIANG Ce, XIAO Lijun, SONG Weidong. Blast Resistance of Polyurea/Aluminum Composite Structures[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034202. doi: 10.11858/gywlxb.20230610 |
[4] | LIU Yonggui, HUI Mengmeng, SHEN Lingyan. Numerical Study on Wave Effect of the Frictional Interface[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 052301. doi: 10.11858/gywlxb.20220513 |
[5] | FANG Zhiqiang, LYU Ping, ZHANG Rui, HUANG Weibo, SUN Pengfei, SANG Yingjie. Blast-Resistant Properties and Mechanism of Anti-Explosion Polyurea Coating[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024102. doi: 10.11858/gywlxb.20210840 |
[6] | WU Hecheng, XIAO Yihua. Comparison of Impact Damage between Ceramic Structure and Nacre-Like Ceramic/Polyurea Composite Structure[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808 |
[7] | WANG Dianxi, GUO Xianghua, ZHANG Qingming. Dynamic Response of Polyurea Coated Steel Plate under Blast Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024103. doi: 10.11858/gywlxb.20180650 |
[8] | GAO Zhao, LI Yongqing, HOU Hailiang, LI Mao, ZHU Xi. Penetration Mechanism of Polyurea Coating Composite Structure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025102. doi: 10.11858/gywlxb.20180619 |
[9] | MIAO Guang-Hong, WANG Zhang-Wen, LI Liang, JIANG Xiang-Yang, LIU Wen-Zhen, CHENG Yang-Fan, WANG Quan, YU Yong, MA Hong-Hao, SHEN Zhao-Wu. Numerical Simulation of Boundary Effect in Explosive Cladding[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 93-96. doi: 10.11858/gywlxb.2017.01.014 |
[10] | CHAI Yan-Jun, LI Ru-Jiang, WANG Feng-Ying, YUE Ji-Wei, WANG Zhi-Yuan, ZHOU Ya-Ping, WANG Zhi-Fang. Coatings of WC/Co Prepared by a Shaped Charge Explosion[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 169-174. doi: 10.11858/gywlxb.2017.02.009 |
[11] | RAN Xian-Wen, TANG Wen-Hui, TAN Hua, DAI Cheng-Da. Discussion on Shear Modulus of Materials at Solid-Liquid Phase Region[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 178-182 . doi: 10.11858/gywlxb.2007.02.010 |
[12] | LUO Ai-Min, ZHANG Qi. Numerical Simulation of Temperature Effects on Warhead Explosion Products[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 45-50 . doi: 10.11858/gywlxb.2006.01.010 |
[13] | LIANG Long-He, CAO Ju-Zhen, LI En-Zheng. Study of the Dynamic Response of Strain-Hardening Target in High-Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 261-267 . doi: 10.11858/gywlxb.2003.04.004 |
[14] | CAI Ling-Cang, LIU Fu-Sheng, JING Fu-Qian. Theoretical Isothermal Compression Curve for Solid Helium[J]. Chinese Journal of High Pressure Physics, 1998, 12(2): 145-149 . doi: 10.11858/gywlxb.1998.02.013 |
[15] | CUI Shuo-Jing, ZHAO Ting-He, YAN Xue-Wei, MA Xian-Feng, ZHU Yi-Bing, CHEN Jiu-Hua, ZHAO Wei. Polycrystalline Jadeite Gem[J]. Chinese Journal of High Pressure Physics, 1994, 8(2): 99-106 . doi: 10.11858/gywlxb.1994.02.003 |
[16] | WANG Chun-Kui. Dynamic Properties of LF-6 and LY-12 Aluminum Alloy under High Temperature-High Temperature Shearing Modulus Measurement[J]. Chinese Journal of High Pressure Physics, 1994, 8(3): 213-219 . doi: 10.11858/gywlxb.1994.03.009 |
[17] | BAO Zhong-Xing, ZHANG Zhi-Ting, LIU Shi-Chao, YU Li-Zhi, CAO Chuan-Hua. The Effect of Pressures on the Electrical Resistance of Amorphous Carbon[J]. Chinese Journal of High Pressure Physics, 1992, 6(2): 150-153 . doi: 10.11858/gywlxb.1992.02.009 |
[18] | WANG Ke-Gang, LONG Qi-Wei. Long-Time Correlation Effects and Fractal Braonian Motion[J]. Chinese Journal of High Pressure Physics, 1991, 5(1): 52-56 . doi: 10.11858/gywlxb.1991.01.008 |
[19] | SU Fang, XU Wei, SU Jun. Effect of Hydrostatic Pressure on Lithium Ionic Conductivity in Amorphous Li+ Conductor[J]. Chinese Journal of High Pressure Physics, 1990, 4(4): 263-269 . doi: 10.11858/gywlxb.1990.04.005 |
[20] | DONG Wei-Yi, LIN Ze-Shou, DENG Ke-Jun. Effect of Pressure on Electrical Resistance of Ten Rare-Earth Metals[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 313-318 . doi: 10.11858/gywlxb.1988.04.004 |