Volume 34 Issue 5
Sep 2020
Turn off MathJax
Article Contents
LI Xiaodong, YUAN Qingxi, XU Wei, ZHENG Lirong. Introduction of Fourth-Generation High Energy Photon Source HEPS and the Beamlines for High-Pressure Research[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554
Citation: LI Xiaodong, YUAN Qingxi, XU Wei, ZHENG Lirong. Introduction of Fourth-Generation High Energy Photon Source HEPS and the Beamlines for High-Pressure Research[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554

Introduction of Fourth-Generation High Energy Photon Source HEPS and the Beamlines for High-Pressure Research

doi: 10.11858/gywlxb.20200554
  • Received Date: 29 Apr 2020
  • Rev Recd Date: 12 May 2020
  • Issue Publish Date: 25 Jul 2020
  • The High Energy Photon Source (HEPS) located at Huairou’s Science City in Bejing, one of the key projects listed in the “13th Five-year Plan for national major scientific and technological infrastructure”, has been under construction since 2019. HEPS will be a world-leading 4th generation high energy synchrotron radiation source featuring very low emittance, very high brilliance and high X-ray energy (about 300 keV).The new light source will provide X-ray probes with smaller size, higher brightness and better coherence for scientific researches. Synchrotron radiation technology has helped researchers achieve rich results in high-pressure research. In turn, the demand for high-pressure research is also promoting the development of synchrotron radiation experiment technology. In this paper, the design of the beamlines in the HPES phase I for high-pressure research are introduced, including a high-pressure beamline, an X-ray absorption spectroscopy beamline, a hard X-ray high energy resolution spectroscopy beamline and a transmission X-ray microscopy beamline. It is expected to help users well understand the functions of these beamlines, and further promote the development of synchrotron radiation high-pressure research together with the user community via seamless integration of techniques and users’ various requirements for advancing high-pressure science.

     

  • loading
  • [1]
    HEMLEY R J. Effects of high pressure on molecules [J]. Annual Review of Physical Chemistry, 2000, 51: 763–800. doi: 10.1146/annurev.physchem.51.1.763
    [2]
    SHEN G Y, MAO H K. High-pressure studies with x-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
    [3]
    MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90: 015007. doi: 10.1103/RevModPhys.90.015007
    [4]
    ASHCROFT N W. Condensed-matter physics: pressure for change in metals [J]. Nature, 2009, 458(7235): 158–159. doi: 10.1038/458158a
    [5]
    MCMILLAN P F. Chemistry at high pressure [J]. Chemical Society Reviews, 2006, 35(10): 855–857. doi: 10.1039/B610410J
    [6]
    MCMILLAN P F. New materials from high-pressure experiments [J]. Nature Materials, 2002, 1(1): 19–25. doi: 10.1038/nmat716
    [7]
    MAO H K, HEMLEY R J. The high-pressure dimension in earth and planetary science [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9114–9115. doi: 10.1073/pnas.0703653104
    [8]
    LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. doi: 10.1073/pnas.1721425115
    [9]
    JENEI Z, O’BANNON E F, WEIR S T, et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar [J]. Nature Communications, 2018, 9: 3563. doi: 10.1038/s41467-018-06071-x
    [10]
    徐济安, 毕延. 同步辐射X射线光源在高压科学研究中的应用 [J]. 物理, 2012, 41(4): 218–226.

    XU J A, BI Y. Application of synchrotron radiation X-ray sources in high pressure research [J]. Physics, 2012, 41(4): 218–226.
    [11]
    LIU J. High pressure X-ray diffraction techniques with synchrotron radiation [J]. Chinese Physics B, 2016, 25(7): 076106. doi: 10.1088/1674-1056/25/7/076106
    [12]
    王其武, 刘文汉. X射线吸收精细结构及其应用[M]. 北京: 科学出版社, 1994: 32–35.

    WANG Q W, LIU W H. X-ray absorption fine structure and it’s application [M]. Beijing: Science Press, 1994: 32–35.
    [13]
    CALVIN S. XAFS for everyone [M]. Boca Raton: Taylor & Francis, 2013: 20–21.
    [14]
    CHEN J H, DUFFY T S, DOBRZHINETSKAYA L F, et al. Advances in high-pressure technology for geophysical applications [M]. Amsterdam: Elsevier, 2005: 397–411.
    [15]
    STERNEMANN C, WILKE M. Spectroscopy of low and intermediate Z elements at extreme conditions: in situ studies of earth materials at pressure and temperature via X-ray raman scattering [J]. High Pressure Research, 2016, 36(3): 275–292. doi: 10.1080/08957959.2016.1198903
    [16]
    侯琪玥, 敬秋民, 张毅, 等. 基于同步辐射的X射线成像技术在静高压研究中的应用 [J]. 高压物理学报, 2016, 30(6): 537–547. doi: 10.11858/gywlxb.2016.06.016

    HOU Q Y, JING Q M, ZHANG Y, et al. Applications of synchrotron X-ray imaging techniques in high static pressure researches [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 537–547. doi: 10.11858/gywlxb.2016.06.016
    [17]
    HETTEL R. The advanced photon source upgrade plan approved [J]. Synchrotron Radiation News, 2019, 32(2): 34–35. doi: 10.1080/08940886.2019.1582289
    [18]
    DIMPER R, REICHERT H, RAIMONDI P, et al. ESRF upgrade programme phase Ⅱ (2015 - 2022) technical design study [R]. France: ESRF, 2014.
    [19]
    TANAKA H, ISHIKAWA T, GOTO S, et al. SPring-8 upgrade project [C]//Proceedings of the 7th International Particle Accelerator Conference. Busan: INSPIRE, 2016: 2867–2870.
    [20]
    SCHROER C G, AGAPOV I, BREFELD W, et al. PETRA IV: the ultralow-emittance source project at DESY [J]. Journal of Synchrotron Radiation, 2018, 25: 1277–1290. doi: 10.1107/S1600577518008858
    [21]
    JIAO Y, XU G, CUI X H, et al. The HEPS project [J]. Journal of Synchrotron Radiation, 2018, 25: 1611–1618. doi: 10.1107/S1600577518012110
    [22]
    TAO Y. Groundbreaking ceremony at the high energy photon source in Beijing [J]. Synchrotron Radiation News, 2019, 32(5): 40. doi: 10.1080/08940886.2019.1654833
    [23]
    SHEN G, PRAKAPENKA V B, ENG P J, et al. Facilities for high-pressure research with the diamond anvil cell at GSECARS [J]. Journal of Synchrotron Radiation, 2005, 12: 642–649. doi: 10.1107/S0909049505022442
    [24]
    SHEN G Y, CHOW P, XIAO Y M, et al. HPCAT: an integrated high-pressure synchrotron facility at the advanced photon source [J]. High Pressure Research, 2008, 28(3): 145–162. doi: 10.1080/08957950802208571
    [25]
    ANDRAULT D, ANTONANGELI D, DMITRIEV V, et al. Science under extreme conditions of pressures and temperatures at the ESRF [J]. Synchrotron Radiation News, 2013, 26(5): 39–44. doi: 10.1080/08940886.2013.832591
    [26]
    HIRAO N, KAWAGUCHI S I, HIROSE K, et al. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8 [J]. Matter and Radiation at Extremes, 2020, 5(1): 018403. doi: 10.1063/1.5126038
    [27]
    LIERMANN H P, KONÔPKOVÁ Z, MORGENROTH W, et al. The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA Ⅲ [J]. Journal of Synchrotron Radiation, 2015, 22: 908–924. doi: 10.1107/S1600577515005937
    [28]
    XU W. Nuclear resonant scattering program in China: opportunities and challenges at the high energy photon source in Huairou [J]. Mössbauer Effect Reference and Data Journal, 2017, 40: 213–218.
    [29]
    MAO H K, XU J, STRUZHKIN V V, et al. Phonon density of states of iron up to 153 gigapascals [J]. Science, 2001, 292(5518): 914–916. doi: 10.1126/science.1057670
    [30]
    LIU J, HU Q Y, KIM D Y, et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones [J]. Nature, 2017, 551(7681): 494–497. doi: 10.1038/nature24461
    [31]
    KUPENKO I, APRILIS G, VASIUKOV D M, et al. Magnetism in cold subducting slabs at mantle transition zone depths [J]. Nature, 2019, 570(7759): 102–106. doi: 10.1038/s41586-019-1254-8
    [32]
    WU J J, LIN J F, WANG X C, et al. Pressure-decoupled magnetic and structural transitions of the parent compound of iron-based 122 superconductors BaFe2As2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(43): 17263–17266. doi: 10.1073/pnas.1310286110
    [33]
    TROYAN I, GAVRILIUK A, RÜFFER R, et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering [J]. Science, 2016, 351(6279): 1303–1306. doi: 10.1126/science.aac8176
    [34]
    BI W, SOUZA-NETO N M, HASKEL D, et al. Synchrotron x-ray spectroscopy studies of valence and magnetic state in europium metal to extreme pressures [J]. Physical Review B, 2012, 85(20): 205134. doi: 10.1103/PhysRevB.85.205134
    [35]
    BI W, LIM J, FABBRIS G, et al. Magnetism of europium under extreme pressures [J]. Physical Review B, 2016, 93(18): 184424. doi: 10.1103/PhysRevB.93.184424
    [36]
    CAI Y Q, MAO H K, CHOW P C, et al. Ordering of hydrogen bonds in high-pressure low-temperature H2O [J]. Physical Review Letters, 2005, 94(2): 025502. doi: 10.1103/PhysRevLett.94.025502
    [37]
    SHIEH S R, JARRIGE I, WU M, et al. Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18402–18406. doi: 10.1073/pnas.1305116110
    [38]
    LEE S K, KIM Y H, YI Y S, et al. Oxygen quadclusters in SiO2 glass above megabar pressures up to 160 GPa revealed by X-ray Raman scattering [J]. Physical Review Letters, 2019, 123(23): 235701. doi: 10.1103/PhysRevLett.123.235701
    [39]
    CHEN B J, PARSCHKE E M, CHEN W C, et al. Probing cerium 4f states across the volume collapse transition by X-ray Raman scattering [J]. The Journal of Physical Chemistry Letters, 2019, 10(24): 7890–7897. doi: 10.1021/acs.jpclett.9b02819
    [40]
    MEIRER F, CABANA J, LIU Y, et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy [J]. Journal of Synchrotron Radiation, 2011, 18(5): 773–781. doi: 10.1107/S0909049511019364
    [41]
    LIU H Z, WANG L H, XIAO X H, et al. Anomalous high-pressure behavior of amorphous selenium from synchrotron x-ray diffraction and microtomography [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13229–13234. doi: 10.1073/pnas.0806857105
    [42]
    XIAO X H, LIU H Z, WANG L H, et al. Density measurement of samples under high pressure using synchrotron microtomography and diamond anvil cell techniques [J]. Journal of Synchrotron Radiation, 2010, 17(3): 360–366. doi: 10.1107/S0909049510008502
    [43]
    WANG J Y, YANG W G, WANG S, et al. High pressure nano-tomography using an iterative method [J]. Journal of Applied Physics, 2012, 111(11): 112626. doi: 10.1063/1.4726249
    [44]
    LIN Y, ZENG Q S, YANG W G, et al. Pressure-induced densification in GeO2 glass: a transmission x-ray microscopy study [J]. Applied Physics Letters, 2013, 103(26): 261909. doi: 10.1063/1.4860993
    [45]
    ZENG Q S, KONO Y, LIN Y, et al. Universal fractional noncubic power law for density of metallic glasses [J]. Physical Review Letters, 2014, 112(18): 185502. doi: 10.1103/PhysRevLett.112.185502
    [46]
    KATAYAMA Y, INAMURA Y, MIZUTANI T, et al. Macroscopic separation of dense fluid phase and liquid phase of phosphorus [J]. Science, 2004, 306(5697): 848–851. doi: 10.1126/science.1102735
    [47]
    LIU Y J, WANG J Y, AZUMA M, et al. Five-dimensional visualization of phase transition in BiNiO3 under high pressure [J]. Applied Physics Letters, 2014, 104(4): 043108. doi: 10.1063/1.4863229
    [48]
    ZHU W L, GAETANI G A, FUSSEIS F, et al. Microtomography of partially molten rocks: three-dimensional melt distribution in mantle peridotite [J]. Science, 2011, 332(6025): 88–91. doi: 10.1126/science.1202221
    [49]
    SHI C Y, ZHANG L, YANG W G, et al. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions [J]. Nature Geoscience, 2013, 6(11): 971–975. doi: 10.1038/ngeo1956
    [50]
    YUAN Q X, ZHANG K, HUANG W X, et al. Conceptual design of TXM beamline at high energy photon source [J]. AIP Conference Proceedings, 2019, 2054(1): 050002. doi: 10.1063/1.5084620
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(14196) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return