Volume 35 Issue 1
Jan 2021
Turn off MathJax
Article Contents
ZHU Qiao, LIU Hanyong, YANG Xiaozhi. Dihedral Angle of Carbonatite Melt and Olivine System at Low Temperature[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 011202. doi: 10.11858/gywlxb.20200553
Citation: ZHU Qiao, LIU Hanyong, YANG Xiaozhi. Dihedral Angle of Carbonatite Melt and Olivine System at Low Temperature[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 011202. doi: 10.11858/gywlxb.20200553

Dihedral Angle of Carbonatite Melt and Olivine System at Low Temperature

doi: 10.11858/gywlxb.20200553
  • Received Date: 25 Apr 2020
  • Rev Recd Date: 15 May 2020
  • Issue Publish Date: 25 Sep 2020
  • As an important fluid medium in the upper mantle, carbonatite melt has stronger chemical and physical activity than silicate melt. The occurrence of a small amount of carbonatite melt in the upper mantle will significantly affect its many geophysical and geochemical properties, such as electrical conductivity and element composition. Experimental studies at elevated conditions are important approaches to understand the chemical and physical effects of carbonatite melt. The physical and chemical influences of carbonatite melt are closely related to its distribution and geometry in the system, and a key factor of them for the characterization is the dihedral angle. Available studies on the dihedral angle (and various physical effects) of carbonate melt are normally carried out at extremely high temperature exceeding about 1 200 ℃, and the potential problem is that the complex reactions between the melt and solid minerals is inevitable and the experiment is difficult under extreme high temperature. In this work, in order to overcome the problems, the reported dihedral angle distribution in the carbonatite-olivine system at low temperature not exceeding 700 ℃ was measured by a low melting pointing carbonatite mixture. The experiments were conducted at 1 GPa with an end-loaded piston cylinder apparatus, and the dihedral angle distribution in the recovered samples were carefully examined by scanning electron microscopy. The results demonstrate a homogeneous distribution of melt in the system, and the observed dihedral angles are mostly 10°−40°, with the average values of 24°−27°. Consequently, this carbonatite has greater ability in wetting grain boundaries, and provides a new analog for future studies on the behavior and geophysical properties of carbonatite melt inside the Earth.

     

  • loading
  • [1]
    HUNTER R H, MCKENZIE D. The equilibrium geometry of carbonate melts in rocks of mantle composition [J]. Earth and Planetary Science Letters, 1989, 92(3/4): 347–356.
    [2]
    MINARIK W G, WATSON E B. Interconnectivity of carbonate melt at low melt fraction [J]. Earth and Planetary Science Letters, 1995, 133(3/4): 423–437.
    [3]
    GREEN D H, WALLACE M E. Mantle metasomatism by ephemeral carbonatite melts [J]. Nature, 1988, 336(6198): 459–462. doi: 10.1038/336459a0
    [4]
    YAXLEY G M, CRAWFORD A J, GREEN D H. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia [J]. Earth and Planetary Science Letters, 1991, 107(2): 305–317. doi: 10.1016/0012-821X(91)90078-V
    [5]
    HAURI E H, SHIMIZU N, DIEU J J, et al. Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle [J]. Nature, 1993, 365(6443): 221–227. doi: 10.1038/365221a0
    [6]
    RUDNICK R L, MCDONOUGH W F, CHAPPELL B W. Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics [J]. Earth and Planetary Science Letters, 1993, 114(4): 463–475. doi: 10.1016/0012-821X(93)90076-L
    [7]
    HARMER R, GITTINS J. The case for primary, mantle-derived carbonatite magma [J]. Journal of Petrology, 1998, 39(11/12): 1895–1903.
    [8]
    SMITH D. Genesis of carbonate in pyrope from ultramafic diatremes on the Colorado Plateau, southwestern United States [J]. Contributions to Mineralogy Petrology, 1987, 97(3): 389–396. doi: 10.1007/BF00372001
    [9]
    BERG G. Evidence for carbonate in the mantle [J]. Nature, 1986, 324(6092): 50–51. doi: 10.1038/324050a0
    [10]
    LE BAS M J. Nephelinites and carbonatites [J]. Geological Society, London, Special Publications, 1987, 30(1): 53–83. doi: 10.1144/GSL.SP.1987.030.01.05
    [11]
    DELANEY J R, MUENOW D W, GRAHAM D G. Abundance and distribution of water, carbon and sulfur in the glassy rims of submarine pillow basalts [J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 581–594. doi: 10.1016/0016-7037(78)90003-0
    [12]
    ANDERSON D L, SAMMIS C. Partial melting in the upper mantle [J]. Physics of the Earth and Planetary Interiors, 1970, 3: 41–50. doi: 10.1016/0031-9201(70)90042-7
    [13]
    STOCKER R, GORDON R. Velocity and internal friction in partial melts [J]. Journal of Geophysical Research, 1975, 80(35): 4828–4836. doi: 10.1029/JB080i035p04828
    [14]
    YOSHINO T, MCISAAC E, LAUMONIER M, et al. Electrical conductivity of partial molten carbonate peridotite [J]. Physics of the Earth and Planetary Interiors, 2012, 194/195: 1–9. doi: 10.1016/j.pepi.2012.01.005
    [15]
    BLUNDY J, DALTON J. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism [J]. Contributions to Mineralogy Petrology, 2000, 139(3): 356–371. doi: 10.1007/s004100000139
    [16]
    YAXLEY G M, GREEN D H. Experimental reconstruction of sodic dolomitic carbonatite melts from metasomatised lithosphere [J]. Contributions to Mineralogy Petrology, 1996, 124(3/4): 359–369.
    [17]
    YAXLEY G M, GREEN D H, KAMENETSKY V. Carbonatite metasomatism in the southeastern Australian lithosphere [J]. Journal of Petrology, 1998, 39(11/12): 1917–1930.
    [18]
    KARATO S I. Does partial melting explain geophysical anomalies? [J]. Physics of the Earth and Planetary Interiors, 2014, 228(3): 300–306.
    [19]
    WAFF H S, FAUL U H. Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts [J]. Journal of Geophysical Research, 1992, 97(B6): 9003–9014. doi: 10.1029/92JB00066
    [20]
    SMITH C S. Some elementary principles of polycrystalline microstructure [J]. Metallurgical Reviews, 1964, 9(1): 1–48. doi: 10.1179/mtlr.1964.9.1.1
    [21]
    VON BARGEN N, WAFF H S. Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B9): 9261–9276. doi: 10.1029/JB091iB09p09261
    [22]
    WARK D A, WATSON E B. Effect of grain size on the distribution and transport of deep-seated fluids and melts [J]. Geophysical Research Letters, 2000, 27(14): 2029–2032. doi: 10.1029/2000GL011503
    [23]
    OLIVARES R I, CHEN C, WRIGHT S. The thermal stability of molten lithium-sodium-potassium carbonate and the influence of additives on the melting point [J]. Journal of Solar Energy Engineering, 2012, 134(4): 041002. doi: 10.1115/1.4006895
    [24]
    LAUMONIER M, FARLA R, FROST D J, et al. Experimental determination of melt interconnectivity and electrical conductivity in the upper mantle [J]. Earth and Planetary Science Letters, 2017, 463: 286–297. doi: 10.1016/j.jpgl.2017.01.037
    [25]
    LAPORTE D, PROVOST A. The grain-scale distribution of silicate, carbonate and metallosulfide partial melts: a review of theory and experiments [C]//BAGDASSAROV N, LAPORTE D, THOMPSON A B. Physics and Chemistry of Partially Molten Rocks. Dordrecht: Springer, 2000: 93–140.
    [26]
    BULAU J, WAFF H, TYBURCZY J. Mechanical and thermodynamic constraints on fluid distribution in partial melts [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B11): 6102–6108. doi: 10.1029/JB084iB11p06102
    [27]
    MAUMUS J M, LAPORTE D, SCHIANO P. Dihedral angle measurements and infiltration property of SiO2-rich melts in mantle peridotite assemblages [J]. Contributions to Mineralogy Petrology, 2004, 148(1): 1–12. doi: 10.1007/s00410-004-0595-x
    [28]
    RIEGGER O K, VAN VLACK L H. Dihedral angle measurements [J]. Transactions of the Metallurgical Society of AIME, 1960, 218: 933–935.
    [29]
    YOSHINO T, MIBE K, YASUDA A, et al. Wetting properties of anorthite aggregates: implications for fluid connectivity in continental lower crust [J]. Journal of Geophysical Research Solid Earth, 2002, 107(B1): ECV 10. doi: 10.1029/2001JB000440
    [30]
    WATSON E B, BRENAN J M, BAKER D R. Distribution of fluids in the continental mantle [C]//MENZIES M A. Continental Mantle. Oxford: Oxford University Press,1990: 111–125.
    [31]
    GAILLARD F, MALKI M, IACONO-MARZIANO G, et al. Carbonatite melts and electrical conductivity in the asthenosphere [J]. Science, 2008, 322(5906): 1363–1365. doi: 10.1126/science.1164446
    [32]
    YOSHINO T, LAUMONIER M, MCISAAC E, et al. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: implications for melt distribution and melt fraction in the upper mantle [J]. Earth and Planetary Science Letters, 2010, 295(3/4): 593–602.
    [33]
    HAMMOUDA T, LAPORTE D. Ultrafast mantle impregnation by carbonatite melts [J]. Geology, 2000, 28(3): 283–285. doi: 10.1130/0091-7613(2000)28<283:UMIBCM>2.0.CO;2
    [34]
    DASGUPTA R, HIRSCHMANN M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide [J]. Nature, 2006, 440(7084): 659–662. doi: 10.1038/nature04612
    [35]
    DOBSON D P, JONES A P, RABE R, et al. In-situ measurement of viscosity and density of carbonate melts at high pressure [J]. Earth and Planetary Science Letters, 1996, 143(1/2/3/4): 207–215.
    [36]
    GENGE M J, PRICE G D, JONES A P J E, et al. Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas [J]. Earth and Planetary Science Letters, 1995, 131(3/4): 225–238.
    [37]
    LIU Q, LANGE R A. New density measurements on carbonate liquids and the partial molar volume of the CaCO3 component [J]. Contributions to Mineralogy Petrology, 2003, 146(3): 370–381. doi: 10.1007/s00410-003-0505-7
    [38]
    TREIMAN A H, SCHEDL A. Properties of carbonatite magma and processes in carbonatite magma chambers [J]. The Journal of Geology, 1983, 91(4): 437–447. doi: 10.1086/628789
    [39]
    GREEN T, ADAM J, SIEL S. Trace element partitioning between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism [J]. Mineralogy and Petrology, 1992, 46(3): 179–184. doi: 10.1007/BF01164645
    [40]
    WOLFF J. Physical properties of carbonatite magmas inferred from molten salt data, and application to extraction patterns from carbonatite–silicate magma chambers [J]. Geological Magazine, 1994, 131(2): 145–153. doi: 10.1017/S0016756800010682
    [41]
    PRESNALL C, GUDFINNSSON G H. Carbonate-rich melts in the oceanic low-velocity zone and deep mantle [J]. Geological Society of America, 2005, 388: 207–216.
    [42]
    KEPPLER H. Water solubility in carbonatite melts [J]. American Mineralogist, 2003, 88(11/12): 1822–1824.
    [43]
    LITASOV K D, SHATSKIY A, OHTANI E, et al. Solidus of alkaline carbonatite in the deep mantle [J]. Geology, 2013, 41(1): 79–82. doi: 10.1130/G33488.1
    [44]
    RABINOWICZ M, RICARD Y, GREGOIRE M. Compaction in a mantle with a very small melt concentration: implications for the generation of carbonatitic and carbonate-bearing high alkaline mafic melt impregnations [J]. Earth and Planetary Science Letters, 2002, 203(1): 205–220. doi: 10.1016/S0012-821X(02)00836-1
    [45]
    MOINE B, GREGOIRE M, O’REILLY S Y, et al. Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago [J]. Lithos, 2004, 75(1/2): 239–252. doi: 10.1016/j.lithos.2003.12.019
    [46]
    FREZZOTTI M L, ANDERSEN T, NEUMANN E R, et al. Carbonatite melt–CO2 fluid inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping, immiscibility and fluid–rock interaction in the upper mantle [J]. Lithos, 2002, 64(3/4): 77–96.
    [47]
    SOKOL A G, KRUK A N, CHEBOTAREV D A, et al. Carbonatite melt–peridotite interaction at 5.5–7.0 GPa: implications for metasomatism in lithospheric mantle [J]. Lithos, 2016, 248/251: 66–79. doi: 10.1016/j.lithos.2016.01.013
    [48]
    KOGARKO L, HENDERSON C, PACHECO H. Primary Ca-rich carbonatite magma and carbonate-silicate-sulphide liquid immiscibility in the upper mantle [J]. Contributions to Mineralogy Petrology, 1995, 121(3): 267–274. doi: 10.1007/BF02688242
    [49]
    BAILEY D. Carbonate melt from the mantle in the volcanoes of south-east Zambia [J]. Nature, 1989, 338(6214): 415–418. doi: 10.1038/338415a0
    [50]
    MCKENIZE D. The extraction of magma from the crust and mantle [J]. Earth and Planetary Science Letters, 1985, 74: 81–91. doi: 10.1016/0012-821X(85)90168-2
    [51]
    GUEGUEN Y, MERCIER J. High attenuation and the low-velocity zone [J]. Physics of the Earth Planetary Interiors, 1973, 7(1): 39–46. doi: 10.1016/0031-9201(73)90038-1
    [52]
    EVANS R L, HIRTH G, BABA K, et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates [J]. Nature, 2005, 437(7056): 249–252. doi: 10.1038/nature04014
    [53]
    NAIF S, KEY K, CONSTABLE S, et al. Melt-rich channel observed at the lithosphere–asthenosphere boundary [J]. Nature, 2013, 495(7441): 356–359. doi: 10.1038/nature11939
    [54]
    SHANKLAND T J, WAFF H S. Partial melting and electrical conductivity anomalies in the upper mantle [J]. Journal of Geophysical Research, 1977, 82(33): 5409–5417. doi: 10.1029/JB082i033p05409
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(4732) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return