Citation: | MEN Jianbing, LU Yihao, JIANG Jianwei, FU Heng, HAN Wei. Johnson-Cook Failure Model Parameters of Tantalum-Tungsten Alloy for Rod-Shaped EFP[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065105. doi: 10.11858/gywlxb.20200550 |
[1] |
隋树元, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000: 233–237.
SUI S Y, WANG S S. Terminal effects [M]. Beijing: National Defense Industry Press, 2000: 233–237.
|
[2] |
杨绍卿. 灵巧弹药工程[M]. 北京: 国防工业出版社, 2010: 1–7.
YANG S Q. Smart munition engineering [M]. Beijing: National Defense Industry Press, 2010: 1–7.
|
[3] |
KIM H J, YI Y S, PARK L J. Analysis of forming characteristics of Ta EFP according to material model [J]. The European Physical Journal Conferences, 2015, 94: 04060. doi: 10.1051/epjconf/20159404060
|
[4] |
郭腾飞, 李伟兵, 李文彬, 等. 钽罩结构参数对EFP成型及侵彻性能的控制 [J]. 高压物理学报, 2018, 32(3): 96–103.
GUO T F, LI W B, LI W B, et al. Controlling effect of tantalum liner's structural parameters on EFP formation and penetration performance [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 96–103.
|
[5] |
樊雪飞, 李伟兵, 王晓鸣, 等. 爆轰驱动钽药型罩形成双模毁伤元仿真与试验研究 [J]. 兵工学报, 2017, 38(10): 1918–1925.
FAN X F, LI W B, WANG X M, et al. Simulation and experimental study of tantalum liner to form dual-mode damage element by detonation [J]. Acta Armamentarii, 2017, 38(10): 1918–1925.
|
[6] |
朱志鹏, 门建兵, 蒋建伟, 等. 大长径比钽爆炸成型弹丸控制研究 [J]. 兵工学报, 2018, 39(Suppl 1): 29–36.
ZHU Z P, MEN J B, JIANG J W, et al. Forming control of tantalum EFP with large aspect ratio [J]. Acta Armamentarii, 2018, 39(Suppl 1): 29–36.
|
[7] |
丁力, 蒋建伟, 门建兵, 等. 爆炸成型弹丸成型过程中的断裂数值模拟及机理分析 [J]. 兵工学报, 2017, 38(3): 417–423.
DING L, JIANG J W, MEN J B, et al. Numerical simulation and mechanism analysis of EFP’s fracture in forming process [J]. Acta Armamentarii, 2017, 38(3): 417–423.
|
[8] |
彭建祥. 钽的本构关系研究 [D]. 绵阳: 中国工程物理研究院, 2001.
PENG J X. Constitutive behavior of tantalum [D]. Mianyang: Chinese Academy of Engineering Physics, 2001.
|
[9] |
郭伟国. 锻造钽的性能及动态流动本构关系 [J]. 稀有金属材料与工程, 2007, 36(1): 23–27.
GUO W G. The characteristics of forged tantalum and dynamic constitutive modelling [J]. Rare Metal Materials and Engineering, 2007, 36(1): 23–27.
|
[10] |
闫洪霞, 高重阳. BCC金属物理型动态本构关系及在钽中的应用 [J]. 兵工学报, 2010, 31(Suppl 1): 149–153.
YAN H X, GAO C Y. A physically-based constitutivemodel for BCC metals and its application in tantalum [J]. Acta Armamentarii, 2010, 31(Suppl 1): 149–153.
|
[11] |
GAO F, ZHANG X F, AHMAD S, et al. Dynamic behavior and constitutive model for two tantalum-tungsten alloys under elevated strain rates [J]. Rare Metal Materials & Engineering, 2017, 46(10): 2753–2762.
|
[12] |
KIM J B, SHIN H. Comparison of plasticity models for tantalum and a modification of the PTW model for wide ranges of strain, strain rate, and temperature [J]. International Journal of Impact Engineering, 2009, 36(5): 746–753. doi: 10.1016/j.ijimpeng.2008.11.003
|
[13] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
|
[14] |
BRIDGMAN P W. Studies in large plastic flow and fracture: with special emphasis on the effects of hydrostatic pressure [M]. New York: McGraw-Hill, 1952.
|
[15] |
林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定 [J]. 振动与冲击, 2014, 33(9): 153–158, 172.
LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158, 172.
|
[16] |
朱志鹏. 反ERA铜钽双EFP设计技术研究 [D]. 北京: 北京理工大学, 2019: 33–37.
ZHU Z P. Research on design technology of anti-ERA tantalum-copper double EFP [D]. Beijing: Beijing Institute of Technology, 2019: 33−37.
|