Volume 34 Issue 6
Nov 2020
Turn off MathJax
Article Contents
MEN Jianbing, LU Yihao, JIANG Jianwei, FU Heng, HAN Wei. Johnson-Cook Failure Model Parameters of Tantalum-Tungsten Alloy for Rod-Shaped EFP[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065105. doi: 10.11858/gywlxb.20200550
Citation: MEN Jianbing, LU Yihao, JIANG Jianwei, FU Heng, HAN Wei. Johnson-Cook Failure Model Parameters of Tantalum-Tungsten Alloy for Rod-Shaped EFP[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065105. doi: 10.11858/gywlxb.20200550

Johnson-Cook Failure Model Parameters of Tantalum-Tungsten Alloy for Rod-Shaped EFP

doi: 10.11858/gywlxb.20200550
  • Received Date: 22 Apr 2020
  • Rev Recd Date: 29 Apr 2020
  • Due to the limitation of current numerical simulation model in predicting the fracture of rod-shaped tantalum-tungsten (Ta-W) alloy explosive formed projectile (EFP) during the forming process, the tests of the mechanical properties of Ta-W alloy specimen under different stress, strain rate and temperature conditions were carried out to obtain the parameters of Johnson-Cook failure model. The forming process of Ta-W EFP with typical charge structure was simulated by LS-DYNA software using the Johnson-Cook failure model and adaptive algorithm. X-ray experiment was carried out to verify the effectiveness of the numerical simulation. When the failure model was used in the numerical simulation of rod-shaped EFP molding, the prediction of EFP fracture was better, and the errors between the simulation results and the experiment results were less than 9%. The results revealed that the formation and fracture of rod-shaped EFP can be accurately predicted by the failure model.

     

  • loading
  • [1]
    隋树元, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000: 233–237.

    SUI S Y, WANG S S. Terminal effects [M]. Beijing: National Defense Industry Press, 2000: 233–237.
    [2]
    杨绍卿. 灵巧弹药工程[M]. 北京: 国防工业出版社, 2010: 1–7.

    YANG S Q. Smart munition engineering [M]. Beijing: National Defense Industry Press, 2010: 1–7.
    [3]
    KIM H J, YI Y S, PARK L J. Analysis of forming characteristics of Ta EFP according to material model [J]. The European Physical Journal Conferences, 2015, 94: 04060. doi: 10.1051/epjconf/20159404060
    [4]
    郭腾飞, 李伟兵, 李文彬, 等. 钽罩结构参数对EFP成型及侵彻性能的控制 [J]. 高压物理学报, 2018, 32(3): 96–103.

    GUO T F, LI W B, LI W B, et al. Controlling effect of tantalum liner's structural parameters on EFP formation and penetration performance [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 96–103.
    [5]
    樊雪飞, 李伟兵, 王晓鸣, 等. 爆轰驱动钽药型罩形成双模毁伤元仿真与试验研究 [J]. 兵工学报, 2017, 38(10): 1918–1925.

    FAN X F, LI W B, WANG X M, et al. Simulation and experimental study of tantalum liner to form dual-mode damage element by detonation [J]. Acta Armamentarii, 2017, 38(10): 1918–1925.
    [6]
    朱志鹏, 门建兵, 蒋建伟, 等. 大长径比钽爆炸成型弹丸控制研究 [J]. 兵工学报, 2018, 39(Suppl 1): 29–36.

    ZHU Z P, MEN J B, JIANG J W, et al. Forming control of tantalum EFP with large aspect ratio [J]. Acta Armamentarii, 2018, 39(Suppl 1): 29–36.
    [7]
    丁力, 蒋建伟, 门建兵, 等. 爆炸成型弹丸成型过程中的断裂数值模拟及机理分析 [J]. 兵工学报, 2017, 38(3): 417–423.

    DING L, JIANG J W, MEN J B, et al. Numerical simulation and mechanism analysis of EFP’s fracture in forming process [J]. Acta Armamentarii, 2017, 38(3): 417–423.
    [8]
    彭建祥. 钽的本构关系研究 [D]. 绵阳: 中国工程物理研究院, 2001.

    PENG J X. Constitutive behavior of tantalum [D]. Mianyang: Chinese Academy of Engineering Physics, 2001.
    [9]
    郭伟国. 锻造钽的性能及动态流动本构关系 [J]. 稀有金属材料与工程, 2007, 36(1): 23–27.

    GUO W G. The characteristics of forged tantalum and dynamic constitutive modelling [J]. Rare Metal Materials and Engineering, 2007, 36(1): 23–27.
    [10]
    闫洪霞, 高重阳. BCC金属物理型动态本构关系及在钽中的应用 [J]. 兵工学报, 2010, 31(Suppl 1): 149–153.

    YAN H X, GAO C Y. A physically-based constitutivemodel for BCC metals and its application in tantalum [J]. Acta Armamentarii, 2010, 31(Suppl 1): 149–153.
    [11]
    GAO F, ZHANG X F, AHMAD S, et al. Dynamic behavior and constitutive model for two tantalum-tungsten alloys under elevated strain rates [J]. Rare Metal Materials & Engineering, 2017, 46(10): 2753–2762.
    [12]
    KIM J B, SHIN H. Comparison of plasticity models for tantalum and a modification of the PTW model for wide ranges of strain, strain rate, and temperature [J]. International Journal of Impact Engineering, 2009, 36(5): 746–753. doi: 10.1016/j.ijimpeng.2008.11.003
    [13]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [14]
    BRIDGMAN P W. Studies in large plastic flow and fracture: with special emphasis on the effects of hydrostatic pressure [M]. New York: McGraw-Hill, 1952.
    [15]
    林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定 [J]. 振动与冲击, 2014, 33(9): 153–158, 172.

    LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158, 172.
    [16]
    朱志鹏. 反ERA铜钽双EFP设计技术研究 [D]. 北京: 北京理工大学, 2019: 33–37.

    ZHU Z P. Research on design technology of anti-ERA tantalum-copper double EFP [D]. Beijing: Beijing Institute of Technology, 2019: 33−37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views(5776) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return