Volume 34 Issue 5
Sep 2020
Turn off MathJax
Article Contents
LUO Guoqiang, FEI Xihuan, YU Yin, ZHANG Ruizhi, ZHANG Chengcheng, SHEN Qiang. Effect of Voids Arrangement on Behavior of PMMA Cellular Materials on Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542
Citation: LUO Guoqiang, FEI Xihuan, YU Yin, ZHANG Ruizhi, ZHANG Chengcheng, SHEN Qiang. Effect of Voids Arrangement on Behavior of PMMA Cellular Materials on Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542

Effect of Voids Arrangement on Behavior of PMMA Cellular Materials on Impact Loading

doi: 10.11858/gywlxb.20200542
  • Received Date: 10 Apr 2020
  • Rev Recd Date: 04 May 2020
  • Cellular materials, characterized by their light weight and energy absorbing, etc., have broad potential applications in the fields of loading-path control, explosion and impact protection. In this paper, the discrete element method of lattice-spring model is utilized to simulate the early impact response of PMMA cellular materials with different arrangement models of voids during the impact loading process. The early void collapse failure, stress distribution and particle velocity of materials with various arrangement models are investigated. Our results show that the arrangement of voids affect the particle velocity but not the shock wave velocity. The cracks are germinated in the area near the longitudinal direction of the void, and the failure mode of the void is mainly shear failure. In different arrangement models of voids, there is a phenomenon of shear cracks interpenetrating between the holes, which promotes the compression of the volume. The square lattice and triangular lattice arrangement models prominently slow the stress concentration and plastic deformation rate of voids in the nearby area. The square lattice, triangular lattice, decreasing arrangement and increasing arrangement significantly have a remarkable influence on the flatness of the shock wave front of PMMA cellular materials. The random arrangement is the most effective one to reduce the particle velocity, and the square lattice contributes most to the post-pressure reduction of the wave front.

     

  • loading
  • [1]
    HU L L, YU T X. Dynamic crushing strength of hexagonal honeycombs [J]. International Journal of Impact Engineering, 2010, 37(5): 467–474. doi: 10.1016/j.ijimpeng.2009.12.001
    [2]
    SUN Y L, LI Q M. Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling [J]. International Journal of Impact Engineering, 2018, 112: 74–115. doi: 10.1016/j.ijimpeng.2017.10.006
    [3]
    DUAN Y, ZHAO X H, LIU Z Y, et al. Dynamic response of additively manufactured graded foams [J]. Composites Part B: Engineering, 2020, 183: 107630. doi: 10.1016/j.compositesb.2019.107630
    [4]
    STAPF S. Porous materials: how molecules huddle in holes [J]. Nature Physics, 2006, 2(11): 731–732. doi: 10.1038/nphys441
    [5]
    GUILLARD F, GOLSHAN P, SHEN L M, et al. Dynamic patterns of compaction in brittle porousmedia [J]. Nature Physics, 2015, 11(10): 835–838. doi: 10.1038/nphys3424
    [6]
    许爱国, 张广财, 蔚喜军, 等. 冲击作用下多孔材料热力学特征的模拟与分析 [J]. 中国工程科学, 2009, 11(9): 13–19. doi: 10.3969/j.issn.1009-1742.2009.09.003

    XU A G, ZHANG G C, YU X J, et al. Simulation study of shock wave reaction on porous material [J]. Engineering Sciences, 2009, 11(9): 13–19. doi: 10.3969/j.issn.1009-1742.2009.09.003
    [7]
    SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: microstructural effects [J]. Journal of Applied Physics, 2007, 101(5): 053525. doi: 10.1063/1.2697428
    [8]
    BRANCH B, IONITA A, PATTERSON B M, et al. A comparison of shockwave dynamics in stochastic and periodic porous polymer architectures [J]. Polymer, 2019, 160: 325–337. doi: 10.1016/j.polymer.2018.10.074
    [9]
    BRANCH B, IONITA A, CLEMENTS B E, et al. Controlling shockwave dynamics using architecture in periodic porous materials [J]. Journal of Applied Physics, 2017, 121(13): 135102. doi: 10.1063/1.4978910
    [10]
    LIU Y, ZHANG X C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs [J]. International Journal of Impact Engineering, 2009, 36(1): 98–109. doi: 10.1016/j.ijimpeng.2008.03.001
    [11]
    ZHENG Z J, YU J L, LI J R. Dynamic crushing of 2D cellular structures: a finite element study [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 650–664. doi: 10.1016/j.ijimpeng.2005.05.007
    [12]
    ZHAO F P, WU H A, LUO S N. Microstructure effects on shock response of Cu nanofoams [J]. Journal of Applied Physics, 2013, 114(7): 073501. doi: 10.1063/1.4818487
    [13]
    HERRING S D, GERMANN T C, GRØNBECH-JENSEN N. Effects of void size, density, and arrangement on deflagration and detonation sensitivity of a reactive empirical bond order high explosive [J]. Physical Review B, 2010, 82(21): 214108. doi: 10.1103/PhysRevB.82.214108
    [14]
    姜太龙, 喻寅, 宦强, 等. 设计脆性材料的冲击塑性 [J]. 物理学报, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301

    JIANG T L, YU Y, HUAN Q, et al. Shock plasticity design of brittle material [J]. Acta Physica Sinica, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [15]
    黄海军, 沈强, 罗国强, 等. 利用多层阻抗梯度飞片产生准等熵压缩的理论解析 [C]//第四届全国爆炸力学实验技术学术会议论文集. 武夷山: 中国力学学会, 2006.
    [16]
    杜艾, 周斌, 沈洋, 等. 激光准等熵压缩实验中阻抗梯度飞片的制备技术简介 [J]. 原子能科学技术, 2014, 48(11): 2158–2164. doi: 10.7538/yzk.2014.48.11.2158

    DU A, ZHOU B, SHEN Y, et al. Brief introduction of fabrication technique for flier-plate with gradient wave impedance in laser-induced quasi-isentropic compression [J]. Atomic Energy Science and Technology, 2014, 48(11): 2158–2164. doi: 10.7538/yzk.2014.48.11.2158
    [17]
    朱婷. 基于ABAQUS软件的PMMA材料裂纹及其扩展研究 [D]. 长沙: 湖南大学, 2016: 2–3.

    ZHU T. Research on crack and propagation of PMMA material based on ABAQUS [D]. Changsha: Hunan University, 2016: 2–3.
    [18]
    喻寅, 李媛媛, 贺红亮, 等. 脆性材料动态断裂的介观格子模型 [J]. 高压物理学报, 2019, 33(3): 030106. doi: 10.11858/gywlxb.20190707

    YU Y, LI Y Y, HE H L, et al. Mesoscale lattice model for dynamic fracture of brittle materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030106. doi: 10.11858/gywlxb.20190707
    [19]
    YU Y, WANG W Q, CHEN K G, et al. Controllable fracture in shocked ceramics: shielding one region from severely fractured state with the sacrifice of another region [J]. International Journal of Solids and Structures, 2018, 135: 137–147. doi: 10.1016/j.ijsolstr.2017.11.016
    [20]
    SULSKY D, ZHOU S J, SCHREYER H L. Application of a particle-in-cell method to solid mechanics [J]. Computer Physics Communications, 1995, 87(1/2): 236–252. doi: 10.1016/0010-4655(94)00170-7
    [21]
    SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. doi: 10.1016/S0022-5096(99)00029-0
    [22]
    GUSEV A A. Finite element mapping for spring network representations of the mechanics of solids [J]. Physical Review Letters, 2004, 93(3): 034302. doi: 10.1103/PhysRevLett.93.034302
    [23]
    YU Y, WANG W Q, HE H L, et al. Mesoscopic deformation features of shocked porous ceramic: polycrystalline modeling and experimental observations [J]. Journal of Applied Physics, 2015, 117(12): 125901. doi: 10.1063/1.4916244
    [24]
    LAWN B. 脆性固体断裂力学 [M]. 龚江宏, 译. 2版. 北京: 高等教育出版社, 2010: 4–5.
    [25]
    PHILLIPS D C, TETELMAN A S. The fracture toughness of fibre composites [J]. Composites, 1972, 3(5): 216–223. doi: 10.1016/0010-4361(72)90630-1
    [26]
    喻寅, 王文强, 杨佳, 等. 多孔脆性介质冲击波压缩破坏的细观机理和图像 [J]. 物理学报, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103

    YU Y, WANG W Q, YANG J, et al. Mesoscopic picture of fracture in porous brittle material under shock wave compression [J]. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [27]
    谭华. 实验冲击波物理 [M]. 2版. 北京: 国防工业出版社, 2018: 67–68.
    [28]
    徐之纶. 弹性力学简明教程 [M]. 3版. 北京: 高等教育出版社, 2002: 145–147.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(7548) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return