Volume 34 Issue 6
Nov 2020
Turn off MathJax
Article Contents
DENG Xuhui, WANG Dafeng. Anti-Blast Performance of Ultra-High Performance Concrete-Filled Double Steel Tubes under Close-in Blast Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540
Citation: DENG Xuhui, WANG Dafeng. Anti-Blast Performance of Ultra-High Performance Concrete-Filled Double Steel Tubes under Close-in Blast Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540

Anti-Blast Performance of Ultra-High Performance Concrete-Filled Double Steel Tubes under Close-in Blast Loading

doi: 10.11858/gywlxb.20200540
  • Received Date: 09 Apr 2020
  • Rev Recd Date: 26 May 2020
  • Issue Publish Date: 25 Jun 2020
  • In order to study the explosion resistance of ultra-high performance concrete-filled double skin steel tubes (UHPCFDST) under near-explosive loads, a three-dimensional finite element model of TNT explosives-UHPCFDST columns-air was established. The ALE multi-material fluid-solid coupling algorithm is used to analyze the damage mechanism, energy absorption characteristics and influence parameters of UHPCFDST columns under near-explosion. The calculation results show that the typical failure modes of UHPCFDST columns under near-explosion are plastic deformation and the collapse of the concrete core pillar. The damage process of the concrete core pillar can be divided into three stages. Compared with the ordinary concrete column, the UHPCFDST column has superior anti-blast performance; within a certain range, reducing the cross-section hollow ratio can effectively improve the explosion resistance of UHPCFDST columns; increasing the thickness of inner and outer steel pipes, particularly for the inner pipe, can increase the explosion resistance of UHPCFDST columns. The presence of axial pressure has a great influence on the deformation of the UHPCFDST column. The increase of axial pressure ratio, within a certain range is beneficial to resisting the overall deformation. As the axial pressure continues to increase, local deformation increases and the UHPCFDST column would lose its strength under the combined effects of the near-blast and the axial loads.

     

  • loading
  • [1]
    XU J C, WU C Q, XIANG H B, et al. Behaviour of ultra high performance fibre reinforced concrete columns subjected to blast loading [J]. Engineering Structures, 2016, 118(1): 97–107.
    [2]
    AOUDE H, BELGHITI M, COOK W D, et al. Response of steel fiber-reinforced concrete beams with and without stirrups [J]. ACI Structural Journal, 2012, 109(3): 359–367.
    [3]
    金何伟, 刘中宪, 刘申永, 等. 钢管超高强钢纤维混凝土柱抗爆性能试验研究 [J]. 建筑结构, 2016, 46(4): 45–49.

    JIN H W, LIU Z X, LIU S Y, et al. Experimental study of ultra-high performance fiber reinforced concrete filled steel tube columns under blast loading [J]. Building Structure, 2016, 46(4): 45–49.
    [4]
    ZHANG F R, WU C Q, ZHAO X L, et al. Experimental and numerical study of blast resistance of square CFDST columns with steel-fibre reinforced concrete [J]. Engineering Structures, 2017, 149: 50–63. doi: 10.1016/j.engstruct.2016.06.022
    [5]
    徐慎春, 刘中宪, 吴成清. 方形中空夹层钢管超高性能钢纤维混凝土柱抗爆性能数值模拟与实验验证 [J]. 振动与冲击, 2017, 36(1): 45–54.

    XU S C, LIU Z X, WU C Q. Numerical simulation and test validation for ultra-high performance steel fiber reinforced concrete-tilled double skin steel tube column under blast loading [J]. Journal of Vibration and Shock, 2017, 36(1): 45–54.
    [6]
    徐慎春, 刘中宪, 吴成清. 圆形中空夹层钢管超高性能钢纤维混凝土柱抗爆性能野外实验与数值模拟 [J]. 爆炸与冲击, 2017, 37(4): 649–660.

    XU S C, LIU Z X, WU C Q. Field blast test and numerical simulation of ultra-high performance steel fiber reinforced concrete-filled double skin steel tube column under blast loading [J]. Explosion and Shock Waves, 2017, 37(4): 649–660.
    [7]
    赵海鸥. LS-DYNA动力分析指南 [M]. 北京: 兵器工业出版社, 2003: 82–86.

    ZHAO H O. LS-DYNA dynamic analysis guide [M]. Beijing: Ordnance Industry Press, 2003: 82–86.
    [8]
    于川, 李良忠, 黄毅民. 含铝炸药爆轰产物JWL状态方程研究 [J]. 爆炸与冲击, 1999, 19(3): 274–279.

    YU C, LI L Z, HUANG Y M. Studies on JWL equation of state of detonation product for aluminized explosives [J]. Explosion and Shock Waves, 1999, 19(3): 274–279.
    [9]
    李翼祺, 马素贞. 爆炸力学 [M]. 北京: 科学出版社, 1992: 60–67.

    LI Y Q, MA S Z. Explosion mechanics[M]. Beijing: Science Press, 1992: 60–67.
    [10]
    LI M H, ZONG Z H, HAO H, et al. Experimental and numerical study on the behaviour of CFDST columns subjected to close-in blast loading [J]. Engineering Structures, 2019, 185(1): 203–220.
    [11]
    WANG R, HAN L H, ZHAO X L, et al. Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact [J]. Thin-Walled Structures, 2016, 101(1): 129–140.
    [12]
    WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: experiment and FEA model [J]. Journal of Constructional Steel Research, 2013, 80: 188–201. doi: 10.1016/j.jcsr.2012.09.003
    [13]
    MAO L, BARNETT S, BEGG D, et al. Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading [J]. International Journal of Impact Engineering, 2014, 64: 91–100. doi: 10.1016/j.ijimpeng.2013.10.003
    [14]
    ISAACS J, MAGALLANES J, REBENTROST M, et al. Exploratory dynamic material characterizing tests on ultra-high performance fibre reinforced concrete [C]//Proceedings of 8th International Conference on Shock and Impact Loads on Structures. Adelaide, Australia, 2009, 1(4): 337–344.
    [15]
    JAYASOORIYA R, THAMBIRATNAM D P, PERERA N J. Blast response and safety evaluation of a composite column for use as key element in structural systems [J]. Engineering Structures, 2014, 61: 31–43. doi: 10.1016/j.engstruct.2014.01.007
    [16]
    WU K C, LI B, TSAI K C. The effects of explosive mass ratio on residual compressive capacity of contact blast damaged composite columns [J]. Journal of Constructional Steel Research, 2011, 67(4): 602–612. doi: 10.1016/j.jcsr.2010.12.001
    [17]
    MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873.
    [18]
    MALVAR L J, CRAWFORD J E, MORRILL K B, et al. K&C concrete material model release Ⅲ: automated generation of material model input: TR-99-24 -B1 [R]. K&C Technical Report, 2009: 154–163.
    [19]
    WANG F W Y, CHONG Q Y K, LIM C H. Reinforced concrete slab subjected to close-in explosion [C]//The Second International Workshop on Performance Procection and Strengthening of Structure under Extreme Loading, 2009: 43–48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(7)

    Article Metrics

    Article views(7642) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return