Volume 34 Issue 5
Sep 2020
Turn off MathJax
Article Contents
LIU Yuanliang, LIU Shaohu, MA Weiguo. Numerical Simulation of CO2 Electrochemical Corrosion of Coiled Tubing in High-Temperature and High-Pressure Gas Wells[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 052401. doi: 10.11858/gywlxb.20200535
Citation: LIU Yuanliang, LIU Shaohu, MA Weiguo. Numerical Simulation of CO2 Electrochemical Corrosion of Coiled Tubing in High-Temperature and High-Pressure Gas Wells[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 052401. doi: 10.11858/gywlxb.20200535

Numerical Simulation of CO2 Electrochemical Corrosion of Coiled Tubing in High-Temperature and High-Pressure Gas Wells

doi: 10.11858/gywlxb.20200535
  • Received Date: 03 Apr 2020
  • Rev Recd Date: 13 Apr 2020
  • Issue Publish Date: 25 Jul 2020
  • In view of the problems of local corrosion, uniform corrosion and pipe body cracking of coiled tubing (CT) in formation containing CO2 and high-temperature and high-pressure gas well, the CT corrosion failure was investigated firstly, and the corrosion failure mechanism was analyzed. The numerical model of CO2 electrochemical corrosion of CT was established by COMSOL multifield coupling analysis method, and the influence of environmental factors on the corrosion rate was researched. The experimental result was compared with the numerical result. The result shows that the minimum error between the experimental corrosion rate and that of the numerical simulation is 1.3%. When the partial pressure of CO2 is 0.1, 0.5 and 1.0 MPa, the corrosion rate of CT reached its peak at 120, 90 and 60 ℃, respectively. When the partial pressure of CO2 is 0.1 MPa, and the electrolyte solution conductivity is 2.86, the corrosion rate of CT is higher at smaller pH value. This study is expected to provide suggestions for the safe use of CT in CO2 corrosion environment.

     

  • loading
  • [1]
    周浩, 刘少胡, 管锋. 内压、弯扭耦合载荷下连续管疲劳寿命评估 [J]. 高压物理学报, 2019, 33(4): 044104. doi: 10.11858/gywlxb.20180611

    ZHOU H, LIU S H, GUAN F. Fatigue life evaluation of coiled tube under coupled load of internal pressure, bending and torsion [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044104. doi: 10.11858/gywlxb.20180611
    [2]
    LIU S H, XIAO H, GUAN F, et al. Coiled tubing failure analysis and ultimate bearing capacity undermulti-groupload [J]. Engineering Failure Analysis, 2017, 79: 803–811. doi: 10.1016/j.engfailanal.2017.05.007
    [3]
    刘剑, 梁卫国. 页岩油气及煤层气开采技术与环境现状及存在问题 [J]. 科学技术与工程, 2017, 17(30): 121–134. doi: 10.3969/j.issn.1671-1815.2017.30.018

    LIU J, LIANG W G. Problems and environmental impacts induced by mining technology of shale oil and gas and coalbed methane [J]. Science Technology and Engineering, 2017, 17(30): 121–134. doi: 10.3969/j.issn.1671-1815.2017.30.018
    [4]
    刘少胡, 周浩, 马卫国, 等. 连续管疲劳寿命预测软件开发及应用 [J]. 石油机械, 2020, 48(2): 135–140. doi: 10.16082/j.cnki.issn.1001-4578.2020.02.020

    LIU S H, ZHOU H, MA W G, et al. Development and application of a coiled tube fatigue life prediction software [J]. China Petroleum Machinery, 2020, 48(2): 135–140. doi: 10.16082/j.cnki.issn.1001-4578.2020.02.020
    [5]
    LIU S H, GUAN F, WU X J, et al. Theoretical and experimental research of bearing capacity and fatigue life for coiled tubing under internal pressure [J]. Engineering Failure Analysis, 2019, 104: 1133–1142. doi: 10.1016/j.engfailanal.2019.06.062
    [6]
    鲜宁, 姜放, 荣明, 等. 连续油管在酸性环境下的腐蚀与防护及其研究进展 [J]. 天然气工业, 2011, 31(4): 113–116. doi: 10.3787/j.issn.1000-0976.2011.04.026

    XIAN N, JIANG F, RONG M, et al. Research progress in corrosion issues and prevention countermeasures of the coiled tubing for downhole sour services [J]. Natural Gas Industry, 2011, 31(4): 113–116. doi: 10.3787/j.issn.1000-0976.2011.04.026
    [7]
    彭文山, 刘雪键, 刘少通, 等. 含砂流动海水中Q235钢冲刷腐蚀行为研究 [J]. 表面技术, 2019, 48(9): 230–237. doi: 10.16490/j.cnki.issn.1001-3660.2019.09.026

    PENG W S, LIU X J, LIU S T, et al. Erosion-corrosion behavior of Q235 steel in flowing seawater containing sand particles [J]. Surface Technology, 2019, 48(9): 230–237. doi: 10.16490/j.cnki.issn.1001-3660.2019.09.026
    [8]
    祝成龙. 连续油管在含H2S/CO2环境中的腐蚀行为研究 [D]. 西安: 西安石油大学, 2013.

    ZHU C L. Study on the corrosion behavior of coiled tubing QT-900 in H2S and CO2 environment [D]. Xi’an: Xi’an Shiyou University, 2013.
    [9]
    陈欢. 连续油管腐蚀寿命的研究 [D]. 北京: 中国石油大学(北京), 2016.

    CHEN H. The research of the coiled tubing corrosion life [D]. Beijing: China University of Petroleum(Beijing), 2016.
    [10]
    路永新. 碳钢焊接接头CO2腐蚀行为及耐蚀焊材开发的研究 [D]. 天津: 天津大学, 2017.

    LU Y X. Research on the CO2 corrosion behavior of carbon steel welded joint and the development of corrosion resistance welding materials [D]. Tianjin: Tianjin University, 2017.
    [11]
    薛玉娜, 雒设计, 刘明, 等. CT80连续油管钢的电化学腐蚀行为 [J]. 腐蚀科学与防护技术, 2013, 25(1): 23–29.

    XUE Y N, LUO S J, LIU M, et al. Electrochemical corrosion behavior of CT80 coiled tubing steel [J]. Corrosion Science and Protection Technology, 2013, 25(1): 23–29.
    [12]
    刘明, 薛玉娜, 高婷, 等. CT80连续油管钢在60 ℃高矿化水中的电化学腐蚀行为 [J]. 腐蚀科学与防护技术, 2013, 25(3): 213–218.

    LIU M, XUE Y N, GAO T, et al. Electrochemical corrosion behavior of a CT80 coiled tubing steel in 60 ℃ salinity solution [J]. Corrosion Science and Protection Technology, 2013, 25(3): 213–218.
    [13]
    祝成龙, 赵国仙, 薛艳, 等. 温度对连续油管QT-900在CO2环境中腐蚀行为的影响 [J]. 腐蚀与防护, 2013, 34(3): 232–235.

    ZHU C L, ZHAO G X, XUE Y, et al. Effect of temperature on corrosion behavior of coiled tubing QT-900 in CO2 environment [J]. Corrosion & Protection, 2013, 34(3): 232–235.
    [14]
    孙福洋, 赵国仙, 郭清超, 等. QT-900油管在不同井段下的耐蚀性 [J]. 热加工工艺, 2015, 44(6): 56–59. doi: 10.14158/j.cnki.1001-3814.2015.06.016

    SUN F Y, ZHAO G X, GUO Q C, et al. Corrosion resistance of QT-900 coiled tubing in different sections of well [J]. Hot Working Technology, 2015, 44(6): 56–59. doi: 10.14158/j.cnki.1001-3814.2015.06.016
    [15]
    任呈强, 刘道新, 白真权, 等. N80油管钢的CO2高温高压腐蚀电化学行为与机理研究 [J]. 西安石油大学学报(自然科学版), 2004, 19(6): 52–56. doi: 10.3969/j.issn.1673-064X.2004.06.014

    REN C Q, LIU D X, BAI Z Q, et al. Electrochemical corrosion behavior and mechanism of N80 steel in the aqueous solution of carbon dioxide under high-temperature high-pressure [J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2004, 19(6): 52–56. doi: 10.3969/j.issn.1673-064X.2004.06.014
    [16]
    WAARD C D, LOTZ U. Prediction of CO2 corrosion of carbon steel: Corrosion/93, paper No.69 [R]. Houston, TX: NACE, 1993.
    [17]
    DESHPANDE K B. Validated numerical modelling of galvanic corrosion for couples: magnesium alloy (AE44)–mild steel and AE44–aluminium alloy (AA6063) in brine solution [J]. Corrosion Science, 2010, 52: 3514–3522. doi: 10.1016/j.corsci.2010.06.031
    [18]
    PADRON T, CRAIG S H. Past and present coiled tubing string failures-history and recent new failures mechanisms [C]//Proceedings of SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. The Woodlands: Society of Petroleum Engineers, 2018.
    [19]
    NESIC S, POSTLETHWAITE J, OLSEN S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52(4): 280–294. doi: 10.5006/1.3293640
    [20]
    曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 122−123, 179.

    CAO C N. Principles of electrochemistry of corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 122−123, 179.
    [21]
    NORDSVEEN M, NEŠIĆ S, NYBORG R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: theory and verification [J]. Corrosion, 2003, 59(5): 443–455. doi: 10.5006/1.3277576
    [22]
    刘大伟, 姚秀浩, 金经洋. 油气井CO2腐蚀及防控方法研究进展 [J]. 广东石油化工学院学报, 2016, 26(4): 1–5, 17. doi: 10.3969/j.issn.2095-2562.2016.04.001

    LIU D W, YAO J H, JIN J Y. Research progress of CO2 corrosion and prevention methods in oil and gas well [J]. Journal of Guangdong University of Petrochemical Technology, 2016, 26(4): 1–5, 17. doi: 10.3969/j.issn.2095-2562.2016.04.001
    [23]
    邱星栋. 塔里木典型含CO2气田316 L复合管内腐蚀行为研究 [D]. 成都: 西南石油大学, 2017.

    QIU X D.Research on the internal corrosion behavior of 316 L clad pipes in Tarim typical CO2 gas fields [D]. Chengdu: Southwest Petroleum University, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(6538) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return