Volume 34 Issue 5
Sep 2020
Turn off MathJax
Article Contents
WU Xingxing, LIU Jianhu, MENG Liping, WANG Haikun, WANG Jun. Variation of Stress Distribution in Metal Fracture Process under Compressive, Torsional, and Tensile Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054204. doi: 10.11858/gywlxb.20200517
Citation: WU Xingxing, LIU Jianhu, MENG Liping, WANG Haikun, WANG Jun. Variation of Stress Distribution in Metal Fracture Process under Compressive, Torsional, and Tensile Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054204. doi: 10.11858/gywlxb.20200517

Variation of Stress Distribution in Metal Fracture Process under Compressive, Torsional, and Tensile Loading

doi: 10.11858/gywlxb.20200517
  • Received Date: 26 Feb 2020
  • Rev Recd Date: 06 Mar 2020
  • In order to accurately fit the failure criteria in JC failure model, BW failure model, and MMC failure model, numerical simulations for metal materials Q345B and 921A under various loading conditions of compression, torsion, tension were performed in this work. The variation of stresses, indicated by stress triaxiality and Lode parameter, was investigated during the fracture progress. The results indicated: (1) exclusive of torsional loading, the stress distribution varied in the cracking plane as the crack growth; (2) the average stress triaxiality and Lode parameter are more suitable for describing the stress status; (3) for specimens having the same size, the value of average stress triaxiality was dependent on metal properties. This work would provide useful knowledge for obtaining the failure criterion from material failure experiments.

     

  • loading
  • [1]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceeding of the 7th International Symposium on Ballistic. The Hague, Netherlands, 1983: 541–547.
    [2]
    BAO Y B, WIERZBICKI T. A comparative study on various ductile crack formation criteria [J]. Journal of Engineering Material and Technology, 2004, 126: 314–324. doi: 10.1115/1.1755244
    [3]
    BAO Y B, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture [J]. International Journal of Fracture, 2010, 161(1): 1–20. doi: 10.1007/s10704-009-9422-8
    [4]
    BORVIK T, HOPPERSTAD O S. A computational model of viscoplasticity and ductile damage for impact and penetration [J]. European Journal of Mechanics Solids, 2001, 20(5): 685–712. doi: 10.1016/S0997-7538(01)01157-3
    [5]
    GUPTA N K, IQBAL M A. Experiment and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt and hemispherical-nosed projectile [J]. International Journal of Impact Engineering, 2006, 32(12): 1921–1944. doi: 10.1016/j.ijimpeng.2005.06.007
    [6]
    肖新科, 王要沛, 王爽, 等. 应力状态在球形弹丸撞击6061-T6铝薄靶弹道行为数值预报中的作用 [J]. 振动与冲击, 2015, 34(22): 87–91.

    XIAO X K, WANG Y P, WANG S, et al. Effect of stress state on the numerical prediction of ballistic resistance of thin 6061-T6 aluminum alloy targets against sphere projectile impacts [J]. Journal of Vibration and Shock, 2015, 34(22): 87–91.
    [7]
    肖新科, 王要沛, 张伟. 应力状态在2024-T351 Taylor杆断裂行为数值预报中的作用 [J]. 北京理工大学学报, 2016, 36(1): 157–161.

    XIAO X K, WANG Y P, ZHANG W. Effect of stress state on the numerical prediction of the fracture behavior of 2064-T351 aluminium alloy Taylor rods [J]. Transactions of Beijing Institute of Technology, 2016, 36(1): 157–161.
    [8]
    BORVIK T, HOPPERSTAD O S. Numerical simulation of plugging failure in ballistic penentrtion [J]. International Journal of Solids and Structures, 2001, 38(25): 6241–6264.
    [9]
    BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(12): 81–98.
    [10]
    GILIOLI A, WIERZBICKI T. Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture model [J]. International Journal of Impact Engineering, 2015, 76(15): 207–220.
    [11]
    TENG X, WIERZBICKI T. Evaluation of six fracture models in high velocity perforation [J]. Engineering Fracture Mechanics, 2006, 73(12): 1653–1678.
    [12]
    李营. 液舱防爆炸破片侵彻作用机理研究 [D]. 武汉: 武汉理工大学, 2014.

    LI Y. Fragment resistant mechanism research of safety liquid cabin [D]. Wuhan: Wuhan University of Technology, 2014.
    [13]
    孟利平. 应变率和应力三轴度对船用钢变形和断裂的影响研究 [D]. 无锡: 中国船舶科学研究中心, 2016.

    MENG L P. Influence of strain rate and stress triaxiality on the deformation and fracture behavior of ship hull steel [D]. Wuxi: China Ship Scientific Research Center, 2016.
    [14]
    BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81–98. doi: 10.1016/j.ijmecsci.2004.02.006
    [15]
    BAO Y B, WIERZBICKI T. On the cut-off value of negative triaxiality for fracture [J]. Engineering Fracture Mechanics, 2005, 72(7): 1049–1069. doi: 10.1016/j.engfracmech.2004.07.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views(6244) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return