Citation: | WANG Shuangjie, YI Li, WANG Duojun, SHEN Kewei, HAN Kenan. Experimental Conductivity of Partial Melt Granite at High Temperature and Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051201. doi: 10.11858/gywlxb.20200502 |
[1] |
LAŠTOVIČKOVÁ M. A review of laboratory measurements of the electrical conductivity of rocks and minerals [J]. Physics of the Earth and Planetary Interiors, 1991, 66(1/2): 1–11. doi: 10.1016/0031-9201(91)90099-4
|
[2] |
YANG X Z, KEPPLER H, MCCAMMON C, et al. Effect of water on the electrical conductivity of lower crustal clinopyroxene [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B4): B04208. doi: 10.1029/2010JB008010
|
[3] |
HUANG X G, XU Y S, KARATO S I. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite [J]. Nature, 2005, 434(7043): 746–749. doi: 10.1038/nature03426
|
[4] |
ARORA B R, UNSWORTH M J, RAWAT G. Deep resistivity structure of the northwest Indian Himalaya and its tectonic implications [J]. Geophysical Research Letters, 2007, 34(4): L04307. doi: 10.1029/2006GL029165
|
[5] |
CALDWELL W B, KLEMPERER S L, RAI S S, et al. Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion [J]. Tectonophysics, 2009, 477(1/2): 58–65. doi: 10.1016/j.tecto.2009.01.013
|
[6] |
WEI W B, UNSWORTH M, JONES A, et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies [J]. Science, 2001, 292(5517): 716–719. doi: 10.1126/science.1010580
|
[7] |
GUO Z F, WILSON M. The Himalayan leucogranites: constraints on the nature of their crustal source region and geodynamic setting [J]. Gondwana Research, 2012, 22(2): 360–376. doi: 10.1016/j.gr.2011.07.027
|
[8] |
SEARLE M P, COTTLE J M, STREULE M J, et al. Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms [J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2010, 100(1/2): 219–233. doi: 10.1017/S175569100901617X
|
[9] |
STREULE M J, SEARLE M P, WATERS D J, et al. Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: constraints from thermosbarometry, metamorphic modeling, and U-Pb geochronology [J]. Tectonics, 2010, 29(5): TC5011. doi: 10.1029/2009TC002533
|
[10] |
OLHOEFT G R. Electrical properties of granite with implications for the lower crust [J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B2): 931–936. doi: 10.1029/JB086iB02p00931
|
[11] |
SHANOV S, YANEV Y, LASTOVICKOVA M. Temperature dependence of the electrical conductivity of granite and quartz-monzonite from South Bulgaria: geodynamic inferences [J]. Journal of the Balkan Geophysical Society, 2000, 3(2): 13–19.
|
[12] |
柳江琳, 白武明, 孔祥儒, 等. 高温高压下花岗岩、玄武岩和辉橄岩电导率的变化特征 [J]. 地球物理学报, 2001, 44(4): 528–533. doi: 10.3321/j.issn:0001-5733.2001.04.011
LIU J L, BAI W M, KONG X R, et al. Electrical conductivity of granite, basalt and pyroxene peridotite under high temperature-high pressure conditions [J]. Chinese Journal of Geophysics, 2001, 44(4): 528–533. doi: 10.3321/j.issn:0001-5733.2001.04.011
|
[13] |
郭颖星, 王多君, 周永胜, 等. 青藏高原南部花岗岩电导率研究及地球物理应用 [J]. 中国科学: 地球科学, 2017, 60(8): 1522–1532. doi: 10.1007/s11430-016-9046-7
GUO Y X, WANG D J, ZHOU Y S, et al. Electrical conductivities of two granite samples in southern Tibet and their geophysical implications [J]. Science China:Earth Sciences, 2017, 60(8): 1522–1532. doi: 10.1007/s11430-016-9046-7
|
[14] |
GUO X, ZHANG L, SU X, et al. Melting inside the Tibetan crust? Constraint from electrical conductivity of peraluminous granitic melt [J]. Geophysical Research Letters, 2018, 45(9): 3906–3913. doi: 10.1029/2018GL077804
|
[15] |
CHEN J Y, GAILLARD F, VILLAROS A, et al. Melting conditions in the modern Tibetan crust since the Miocene [J]. Nature Communications, 2018, 9(1): 3515. doi: 10.1038/s41467-018-05934-7
|
[16] |
王多君, 易丽, 谢鸿森, 等. 交流阻抗谱法及其在地球深部物质科学中的应用 [J]. 地学前缘, 2005, 12(1): 123–129. doi: 10.3321/j.issn:1005-2321.2005.01.016
WANG D J, YI L, XIE H S, et al. Impedance spectroscopy and its application to material science of the Earth's interior [J]. Earth Science Frontiers, 2005, 12(1): 123–129. doi: 10.3321/j.issn:1005-2321.2005.01.016
|
[17] |
DAI L D, KARATO S I. Electrical conductivity of wadsleyite at high temperatures and high pressures [J]. Earth and Planetary Science Letters, 2009, 287(1/2): 277–283. doi: 10.1016/j.jpgl.2009.08.012
|
[18] |
XIE H S, ZHOU W G, ZHU M X, et al. Elastic and electrical properties of serpentinite dehydration at high temperature and high pressure [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 11359–11363. doi: 10.1088/0953-8984/14/44/482
|
[19] |
DUBA A. Electrical conductivity of olivine [J]. Journal of Geophysical Research, 1972, 77(14): 2483–2494. doi: 10.1029/JB077i014p02483
|
[20] |
ROBERTS J J, TYBURCZY J A. Frequency dependent electrical properties of dunite as functions of temperature and oxygen fugacity [J]. Physics and Chemistry of Minerals, 1993, 19(8): 545–561. doi: 10.1007/BF00203054
|
[21] |
徐有生. 地幔矿物岩石的电导率研究进展 [J]. 地学前缘, 2000, 7(1): 229–237. doi: 10.3321/j.issn:1005-2321.2000.01.022
XU Y S. A review on the electrical conductivity of mantle minerals and rocks [J]. Earth Science Frontiers, 2000, 7(1): 229–237. doi: 10.3321/j.issn:1005-2321.2000.01.022
|
[22] |
NI H W, HUI H J, STEINLE-NEUMANN G. Transport properties of silicate melts [J]. Reviews of Geophysics, 2015, 53(3): 715–744. doi: 10.1002/2015RG000485
|
[23] |
GAILLARD F. Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure [J]. Earth and Planetary Science Letters, 2004, 218(1/2): 215–228. doi: 10.1016/S0012-821X(03)00639-3
|
[24] |
LAUMONIER M, GAILLARD F, SIFRE D. The effect of pressure and water concentration on the electrical conductivity of dacitic melts: implication for magnetotelluric imaging in subduction areas [J]. Chemical Geology, 2015, 418: 66–76. doi: 10.1016/j.chemgeo.2014.09.019
|
[25] |
JAMBON A. Tracer diffusion in granitic melts: experimental results for Na, K, Rb, Cs, Ca, Sr, Ba, Ce, Eu to 1 300 ℃ and a model of calculation [J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B13): 10797–10810. doi: 10.1029/JB087iB13p10797
|
[26] |
GUO X, ZHANG L, BEHRENS H, et al. Probing the status of felsic magma reservoirs: constraints from the P-T-H2O dependences of electrical conductivity of rhyolitic melt [J]. Earth and Planetary Science Letters, 2016, 433: 54–62. doi: 10.1016/j.jpgl.2015.10.036
|
[27] |
POMMIER A, GAILLARD F, PICHAVANT M, et al. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure [J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B5): B05205. doi: 10.1029/2007JB005269
|
[28] |
黄晓葛, 白武明, 周文戈. 高温高压下黑云斜长片麻岩的电性研究 [J]. 高压物理学报, 2008, 22(3): 237–244. doi: 10.3969/j.issn.1000-5773.2008.03.003
HUANG X G, BAI W M, ZHOU W G. Experimental study on electrical conductivity of biotite-and plagioclase-bearing gneiss at high temperature and high pressure [J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 237–244. doi: 10.3969/j.issn.1000-5773.2008.03.003
|
[29] |
SKJERLIE K P, JOHNSTON A D. Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of Anorogenic Granites [J]. Journal of Petrology, 1993, 34(4): 785–815. doi: 10.1093/petrology/34.4.785
|
[30] |
GARDIEN V, THOMPSON A B, GRUJIC D, et al. Experimental melting of biotite+plagioclase+quartz+muscovite assemblages and implications for crustal melting [J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B8): 15581–15591. doi: 10.1029/95JB00916
|
[31] |
吴宗絮, 邓晋福, WYLLIE P J. 冀东黑云母片麻岩在1 GPa压力下脱水熔融实验 [J]. 地质科学, 1995(1): 12–18.
WU Z X, DENG J F, WYLLIE P J, et al. Dehydration-melting experiment of the biotite-gneiss, eastern Hebei, at 1 GPa pressure [J]. Scientia Geologica Sinica, 1995(1): 12–18.
|
[32] |
杨晓松, 金振民, HUENGES E, et al. 高喜马拉雅黑云斜长片麻岩脱水熔融实验: 对青藏高原地壳深熔的启示 [J]. 科学通报, 2001, 46(10): 867–871. doi: 10.1007/BF02900441
YANG X S, JIN Z M, HUENGES E, et al. Dehydration and melting experiment of high Himalayan biotite and plagioclase bearing gneiss: implications for deep crustal melting on the Tibetan plateau [J]. Chinese Science Bulletin, 2001, 46(10): 867–871. doi: 10.1007/BF02900441
|
[33] |
PHAM V N, BOYER D, THERME P, et al. Partial melting zones in the crust in southern Tibet from magnetotelluric results [J]. Nature, 1986, 319(6051): 310–314. doi: 10.1038/319310a0
|
[34] |
BROWN L D, ZHAO W J, NELSON K D, et al. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling [J]. Science, 1996, 274(5293): 1688–1690. doi: 10.1126/science.274.5293.1688
|
[35] |
UNSWORTH M J, JONES A G, WEI W, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data [J]. Nature, 2005, 438(7064): 78–81. doi: 10.1038/nature04154
|
[36] |
NELSON K D, ZHAO W J, BROWN L D, et al. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results [J]. Science, 1996, 274(5293): 1684–1688. doi: 10.1126/science.274.5293.1684
|
[37] |
SPRATT J E, JONES A G, NELSON K D, et al. Crustal structure of the India-Asia collision zone, southern Tibet, from INDEPTH MT investigations [J]. Physics of the Earth and Planetary Interiors, 2005, 150(1/2/3): 227–237. doi: 10.1016/j.pepi.2004.08.035
|
[38] |
魏文博, 金胜, 叶高峰, 等. 西藏高原中、北部断裂构造特征: INDEPTH(Ⅲ)-MT观测提供的依据 [J]. 地球科学, 2006, 31(2): 257–265. doi: 10.3321/j.issn:1000-2383.2006.02.017
WEI W B, JIN S, YE G F, et al. Features of the faults in center and North Tibetan Plateau: based on results of INDEPTH (Ⅲ)-MT [J]. Earth Science, 2006, 31(2): 257–265. doi: 10.3321/j.issn:1000-2383.2006.02.017
|
[39] |
FU H F, ZHANG B H, GE J H, et al. Thermal diffusivity and thermal conductivity of granitoids at 283-988 K and 0.3-1.5 GPa [J]. American Mineralogist, 2019, 104(11): 1533–1545. doi: 10.2138/am-2019-7099
|
[40] |
HACKER B R, RITZWOLLER M H, XI E J. Partially melted, mica-bearing crust in Central Tibet [J]. Tectonics, 2014, 33(7): 1408–1424. doi: 10.1002/2014TC003545
|
[41] |
MECHIE J, SOBOLEV S V, RATSCHBACHER L, et al. Precise temperature estimation in the Tibetan crust from seismic detection of the α-β quartz transition [J]. Geology, 2004, 32(7): 601–604. doi: 10.1130/G20367.1
|
[42] |
WANG Q, HAWKESWORTH C J, WYMAND, et al. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow [J]. Nature Communications, 2016, 7: 11888. doi: 10.1038/ncomms11888
|
[43] |
WANG C Y, CHEN W P, WANG L P. Temperature beneath Tibet [J]. Earth and Planetary Science Letters, 2013, 375: 326–337. doi: 10.1016/j.jpgl.2013.05.052
|