Citation: | LIU Jingnan, YE Changqing, LIU Guisen, SHEN Yao. Crystal Plasticity Finite Element Theoretical Models and Applications for High Temperature, High Pressure and High Strain-Rate Dynamic Process[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874 |
[1] |
BODNER S R, PARTOM Y. Constitutive equations for elastic-viscoplastic strain-hardening materials [J]. Journal of Applied Mechanics, 1975, 42(2): 385–389. doi: 10.1115/1.3423586
|
[2] |
JOHNSON G R. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures [J]. Proceeding of the 7th International Symposium on Ballistics, 1983: 541–547.
|
[3] |
ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
|
[4] |
STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
|
[5] |
GUPTA Y M, DUVALL G E, FOWLES G R. Dislocation mechanisms for stress relaxation in shocked LiF [J]. Journal of Applied Physics, 1975, 46(2): 532–546. doi: 10.1063/1.321678
|
[6] |
ASAY J R, FOWLES G R, DURALL G E, et al. Effects of point defects on elastic precursor decay in LiF [J]. Journal of Applied Physics, 1972, 43(5): 2132–2145. doi: 10.1063/1.1661464
|
[7] |
WOLFER W G. Phonon drag on dislocations at high pressures: UCRL-ID-136221 [R]. Office of Scientific and Technical Information (OSTI), 1999.
|
[8] |
CAWKWELL M J, RAMOS K J, HOOKS D E, et al. Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading [J]. Journal of Applied Physics, 2010, 107(6): 063512. doi: 10.1063/1.3305630
|
[9] |
SHEHADEH M A, BRINGA E M, ZBIB H M, et al. Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations [J]. Applied Physics Letters, 2006, 89(17): 171918. doi: 10.1063/1.2364853
|
[10] |
CERRETA E K, ESCOBEDO J P, RIGG P A, et al. The influence of phase and substructural evolution during dynamic loading on subsequent mechanical properties of zirconium [J]. Acta Materialia, 2013, 61(20): 7712–7719. doi: 10.1016/j.actamat.2013.09.009
|
[11] |
BOURNE N K, MILLETT J C F, CHEN M, et al. On the Hugoniot elastic limit in polycrystalline alumina [J]. Journal of Applied Physics, 2007, 102(7): 073514. doi: 10.1063/1.2787154
|
[12] |
MEYERS M A, GREGORI F, KAD B K, et al. Laser-induced shock compression of monocrystalline copper: characterization and analysis [J]. Acta Materialia, 2003, 51(5): 1211–1228. doi: 10.1016/S1359-6454(02)00420-2
|
[13] |
RAHUL, DE S. A phase-field model for shock-induced α-γ phase transition of RDX [J]. International Journal of Plasticity, 2017, 88: 140–158. doi: 10.1016/j.ijplas.2016.10.006
|
[14] |
ADDESSIO F L, LUSCHER D J, CAWKWELL M J, et al. A single-crystal model for the high-strain rate deformation of cyclotrimethylene trinitramine including phase transformations and plastic slip [J]. Journal of Applied Physics, 2017, 121(18): 185902. doi: 10.1063/1.4983009
|
[15] |
WINEY J M, GUPTA Y M. Shock wave compression of hexagonal-close-packed metal single crystals: time-dependent, anisotropic elastic-plastic response of beryllium [J]. Journal of Applied Physics, 2014, 116(3): 033505. doi: 10.1063/1.4889886
|
[16] |
KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
|
[17] |
KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1/2): 173–191.
|
[18] |
CHEN X, ASAY J R, DWIVEDI S K, et al. Spall behavior of aluminum with varying microstructures [J]. Journal of Applied Physics, 2006, 99(2): 023528. doi: 10.1063/1.2165409
|
[19] |
ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications [J]. Acta Materialia, 2010, 58(4): 1152–1211. doi: 10.1016/j.actamat.2009.10.058
|
[20] |
郑松林. 晶体塑性有限元在材料动态响应研究中的应用进展 [J]. 高压物理学报, 2019, 33(3): 030108. doi: 10.11858/gywlxb.20190725
ZHENG S L. Advances in the study of dynamic response of crystalline materials by crystal plasticity finite element modeling [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030108. doi: 10.11858/gywlxb.20190725
|
[21] |
HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401–413. doi: 10.1016/0022-5096(72)90017-8
|
[22] |
ASARO R J. Micromechanics of crystals and polycrystals [M]//Advances in Applied Mechanics. Elsevier, 1983: 1–115.
|
[23] |
CLAYTON J D. Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(2): 261–301. doi: 10.1016/j.jmps.2004.06.009
|
[24] |
VOGLER T, CLAYTON J. Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 297–335. doi: 10.1016/j.jmps.2007.06.013
|
[25] |
HANSEN B L, BEYERLEIN I J, BRONKHORST C A, et al. A dislocation-based multi-rate single crystal plasticity model [J]. International Journal of Plasticity, 2013, 44: 129–146. doi: 10.1016/j.ijplas.2012.12.006
|
[26] |
DE S, ZAMIRI A R, RAHUL. A fully anisotropic single crystal model for high strain rate loading conditions with an application to α-RDX [J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 287–301. doi: 10.1016/j.jmps.2013.10.012
|
[27] |
SHAHBA A, GHOSH S. Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part Ⅰ: a unified constitutive model and flow rule [J]. International Journal of Plasticity, 2016, 87: 48–68. doi: 10.1016/j.ijplas.2016.09.002
|
[28] |
BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. John Wiley & Sons, 2013.
|
[29] |
BECKER R. Effects of crystal plasticity on materials loaded at high pressures and strain rates [J]. International Journal of Plasticity, 2004, 20(11): 1983–2006. doi: 10.1016/j.ijplas.2003.09.002
|
[30] |
PI A G, HUANG F L, WU Y Q, et al. Anisotropic constitutive model and numerical simulations for crystalline energetic material under shock loading [J]. Mathematics and Mechanics of Solids, 2014, 19(6): 640–658. doi: 10.1177/1081286513482322
|
[31] |
LUSCHER D J, BRONKHORST C A, ALLEMAN C N, et al. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions [J]. Journal of the Mechanics and Physics of Solids, 2013, 61(9): 1877–1894. doi: 10.1016/j.jmps.2013.05.002
|
[32] |
LUSCHER D J, MAYEUR J R, MOURAD H M, et al. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions [J]. International Journal of Plasticity, 2016, 76: 111–129. doi: 10.1016/j.ijplas.2015.07.007
|
[33] |
DOS SANTOS T, ROSA P A R, MAGHOUS S, et al. A simplified approach to high strain rate effects in cold deformation of polycrystalline FCC metals: constitutive formulation and model calibration [J]. International Journal of Plasticity, 2016, 82: 76–96. doi: 10.1016/j.ijplas.2016.02.003
|
[34] |
STAINIER L, ORTIZ M. Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity [J]. International Journal of Solids and Structures, 2010, 47(5): 705–715. doi: 10.1016/j.ijsolstr.2009.11.012
|
[35] |
VON NEUMANN J, RICHTMYER R D. A method for the numerical calculation of hydrodynamic shocks [J]. Journal of Applied Physics, 1950, 21(3): 232–237. doi: 10.1063/1.1699639
|
[36] |
VINET P, SMITH J R, FERRANTE J, et al. Temperature effects on the universal equation of state of solids [J]. Physical Review B, 1987, 35(4): 1945. doi: 10.1103/PhysRevB.35.1945
|
[37] |
李欣竹. 金属物态方程的讨论 [D]. 绵阳: 中国工程物理研究院, 2003.
LI X Z. Discussion for the semi-empiric equation of state of metals [D]. Mianyang: China Academy of Engineering Physics, 2003.
|
[38] |
CAWKWELL M J, LUSCHER D J, ADDESSIO F L, et al. Equations of state for the α and γ polymorphs of cyclotrimethylene trinitramine [J]. Journal of Applied Physics, 2016, 119(18): 185106. doi: 10.1063/1.4948673
|
[39] |
LUSCHER D J, ADDESSIO F L, CAWKWELL M J, et al. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine [J]. Journal of the Mechanics and Physics of Solids, 2017, 98: 63–86. doi: 10.1016/j.jmps.2016.09.005
|
[40] |
尚福林, 王子昆. 塑性力学基础 [M]. 西安: 西安交通大学出版社, 2011.
SHANG F L, WANG Z K. Fundamentals of of plasticity [M]. Xi’an: Xi’an Jiaotong University Press, 2011.
|
[41] |
HUTCHINSON J W. Bounds and self-consistent estimates for creep of polycrystalline materials [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1976, 348(1652): 101–127.
|
[42] |
LI H W, YANG H, SUN Z C. A robust integration algorithm for implementing rate dependent crystal plasticity into explicit finite element method [J]. International Journal of Plasticity, 2008, 24(2): 267–288. doi: 10.1016/j.ijplas.2007.03.014
|
[43] |
KHAN A S, LIU J, YOON J W, et al. Strain rate effect of high purity aluminum single crystals: experiments and simulations [J]. International Journal of Plasticity, 2015, 67: 39–52. doi: 10.1016/j.ijplas.2014.10.002
|
[44] |
ZHANG K, HOPPERSTAD O, HOLMEDAL B, et al. A robust and efficient substepping scheme for the explicit numerical integration of a rate-dependent crystal plasticity model [J]. International Journal for Numerical Methods in Engineering, 2014, 99(4): 239–262. doi: 10.1002/nme.4671
|
[45] |
LIM H, JONG BONG H, CHEN S R, et al. Developing anisotropic yield models of polycrystalline tantalum using crystal plasticity finite element simulations [J]. Materials Science and Engineering A, 2018, 730: 50–56. doi: 10.1016/j.msea.2018.05.096
|
[46] |
BOBBILI R, MADHU V. Crystal plasticity modeling of a near alpha titanium alloy under dynamic compression [J]. Journal of Alloys and Compounds, 2018, 759: 85–92. doi: 10.1016/j.jallcom.2018.05.167
|
[47] |
KOCKS U F, ARGON A S, ASHBY M F. Thermodynamics and kinetics of slip [J]. Progress in Materials Science, 1975, 19: 141–145.
|
[48] |
LI J F, ROMERO I, SEGURADO J. Development of a thermo-mechanically coupled crystal plasticity modeling framework: application to polycrystalline homogenization [J]. International Journal of Plasticity, 2019, 119: 313–330. doi: 10.1016/j.ijplas.2019.04.008
|
[49] |
BRONKHORST C A, GRAY G T III, ADDESSIO F L, et al. Publisher's note: “Response and representation of ductile damage under varying shock loading conditions in tantalum”[J. Appl. Phys. 119, 085103(2016)] [J]. Journal of Applied Physics, 2016, 119(10): 109901.
|
[50] |
CHANDRA S, SAMAL M K, KAPOOR R, et al. Deformation behavior of Nickel-based superalloy Su-263: experimental characterization and crystal plasticity finite element modeling [J]. Materials Science and Engineering A, 2018, 735: 19–30. doi: 10.1016/j.msea.2018.08.022
|
[51] |
王礼立, 胡时胜, 杨黎明. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017.
WANG L L, HU S S, YANG L M. Thermodynamics and kinetics of materials [M]. Hefei: Press of University of Science and Technology of China, 2017.
|
[52] |
MEYERS M A. 材料的动力学行为 [M]. 张庆明, 译. 北京: 国防工业出版社, 2006.
MEYERS M A. Dynamic behavior of materials [M]. Translated by ZHANG Q M. Beijing: National Defense Industry Press, 2006.
|
[53] |
黄克智, 肖纪美. 材料的损伤断裂机理和宏微观力学理论 [M]. 北京: 清华大学出版社, 1999.
HUANG K Z, XIAO J M. Damage and fracture mechanisms of materials and macro-micro-mechanics [M]. Beijing: Tsinghua University Press, 1999.
|
[54] |
BITTENCOURT E. Dynamic explicit solution for higher-order crystal plasticity theories [J]. International Journal of Plasticity, 2014, 53: 1–16. doi: 10.1016/j.ijplas.2013.06.010
|
[55] |
PEIRCE D, ASARO R J, NEEDLEMAN A. An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metallurgica, 1982, 30(6): 1087–1119. doi: 10.1016/0001-6160(82)90005-0
|
[56] |
ACHARYA A, BEAUDOIN A J. Grain-size effect in viscoplastic polycrystals at moderate strains [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(10): 2213–2230. doi: 10.1016/S0022-5096(00)00013-2
|
[57] |
CLAYTON J D. Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys [J]. International Journal of Solids and Structures, 2005, 42(16/17): 4613–4640.
|
[58] |
CLAYTON J D. Plasticity and spall in high density polycrystals: modeling and simulation [C]//AIP Conference Proceedings, Baltimore, Maryland (USA). AIP, 2006.
|
[59] |
TAJALLI S A, MOVAHHEDY M R, AKBARI J. Simulation of orthogonal micro-cutting of FCC materials based on rate-dependent crystal plasticity finite element model [J]. Computational Materials Science, 2014, 86: 79–87. doi: 10.1016/j.commatsci.2014.01.016
|
[60] |
LI J G, LI Y L, HUANG C X, et al. On adiabatic shear localization in nanostructured face-centered cubic alloys with different stacking fault energies [J]. Acta Materialia, 2017, 141: 163–182. doi: 10.1016/j.actamat.2017.09.022
|
[61] |
LI J G, LI Y L, SUO T, et al. Numerical simulations of adiabatic shear localization in textured FCC metal based on crystal plasticity finite element method [J]. Materials Science and Engineering A, 2018, 737: 348–363. doi: 10.1016/j.msea.2018.08.105
|
[62] |
JOHNSTON W G, GILMAN J J. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals [J]. Journal of Applied Physics, 1959, 30(2): 129–144. doi: 10.1063/1.1735121
|
[63] |
GILMAN J J. The plastic resistance of crystals [J]. Australian Journal of Physics, 1960, 13(2): 327. doi: 10.1071/PH600327a
|
[64] |
GILMAN J J. Micromechanics of flow in solids [M]. McGraw-Hill, 1969.
|
[65] |
JOHNSON J N, BARKER L M. Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum [J]. Journal of Applied Physics, 1969, 40(11): 4321–4334. doi: 10.1063/1.1657194
|
[66] |
ALANKAR A, EISENLOHR P, RAABE D. A dislocation density-based crystal plasticity constitutive model for prismatic slip in α-titanium [J]. Acta Materialia, 2011, 59(18): 7003–7009. doi: 10.1016/j.actamat.2011.07.053
|
[67] |
ZHANG H M, DONG X H, DU D P, et al. A unified physically based crystal plasticity model for FCC metals over a wide range of temperatures and strain rates [J]. Materials Science and Engineering A, 2013, 564: 431–441. doi: 10.1016/j.msea.2012.12.001
|
[68] |
MONNET G, VINCENT L, DEVINCRE B. Dislocation-dynamics based crystal plasticity law for the low- and high-temperature deformation regimes of bcc crystal [J]. Acta Materialia, 2013, 61(16): 6178–6190. doi: 10.1016/j.actamat.2013.07.002
|
[69] |
NGUYEN T, LUSCHER D J, WILKERSON J W. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals [J]. Journal of the Mechanics and Physics of Solids, 2017, 108: 1–29. doi: 10.1016/j.jmps.2017.07.020
|
[70] |
GRILLI N, JANSSENS K G F, NELLESSEN J, et al. Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method [J]. International Journal of Plasticity, 2018, 100: 104–121. doi: 10.1016/j.ijplas.2017.09.015
|
[71] |
FROST H J, ASHBY M F. Motion of a dislocation acted on by a viscous drag through an array of discrete obstacles [J]. Journal of Applied Physics, 1971, 42(13): 5273–5279. doi: 10.1063/1.1659936
|
[72] |
LIM H, BATTAILE C C, CARROLL J D, et al. A physically based model of temperature and strain rate dependent yield in BCC metals: implementation into crystal plasticity [J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 80–96. doi: 10.1016/j.jmps.2014.10.003
|
[73] |
KOCKS W. Thermodynamics and kinetics of slip [J]. Progress in Materials Science, 1975, 19: 1–281. doi: 10.1016/0079-6425(75)90005-5
|
[74] |
AUSTIN R A. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature [J]. Journal of Applied Physics, 2018, 123(3): 035103. doi: 10.1063/1.5008280
|
[75] |
AUSTIN R A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates [J]. International Journal of Plasticity, 2011, 27(1): 1–24. doi: 10.1016/j.ijplas.2010.03.002
|
[76] |
AUSTIN R A, MCDOWELL D L. Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum [J]. International Journal of Plasticity, 2012, 32/33: 134–154. doi: 10.1016/j.ijplas.2011.11.002
|
[77] |
GAO C Y, ZHANG L C. Constitutive modelling of plasticity of fcc metals under extremely high strain rates [J]. International Journal of Plasticity, 2012, 32/33: 121–133. doi: 10.1016/j.ijplas.2011.12.001
|
[78] |
WANG Z Q, BEYERLEIN I J, LESAR R. Slip band formation and mobile dislocation density generation in high rate deformation of single fcc crystals [J]. Philosophical Magazine, 2008, 88(9): 1321–1343. doi: 10.1080/14786430802129833
|
[79] |
TSCHOPP M A, MCDOWELL D L. Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1806–1830. doi: 10.1016/j.jmps.2007.11.012
|
[80] |
SHEHADEH M A, ZBIB H M. On the homogeneous nucleation and propagation of dislocations under shock compression [J]. Philosophical Magazine, 2016, 96(26): 2752–2778. doi: 10.1080/14786435.2016.1213444
|
[81] |
MA A, ROTERS F, RAABE D. A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations [J]. Acta Materialia, 2006, 54(8): 2169–2179. doi: 10.1016/j.actamat.2006.01.005
|
[82] |
MA A, ROTERS F. A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals [J]. Acta Materialia, 2004, 52(12): 3603–3612. doi: 10.1016/j.actamat.2004.04.012
|
[83] |
LLOYD J T, CLAYTON J D, AUSTIN R A, et al. Plane wave simulation of elastic-viscoplastic single crystals [J]. Journal of the Mechanics and Physics of Solids, 2014, 69: 14–32. doi: 10.1016/j.jmps.2014.04.009
|
[84] |
ALANKAR A, FIELD D P, ZBIB H M. Explicit incorporation of cross-slip in a dislocation density-based crystal plasticity model [J]. Philosophical Magazine, 2012, 92(24): 3084–3100. doi: 10.1080/14786435.2012.685964
|
[85] |
KESHAVARZ S, GHOSH S. Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys [J]. Acta Materialia, 2013, 61(17): 6549–6561. doi: 10.1016/j.actamat.2013.07.038
|
[86] |
LIANG H, DUNNE F P E. GND accumulation in bi-crystal deformation: crystal plasticity analysis and comparison with experiments [J]. International Journal of Mechanical Sciences, 2009, 51(4): 326–333. doi: 10.1016/j.ijmecsci.2009.03.005
|
[87] |
GÜVENÇ O, BAMBACH M, HIRT G. Coupling of crystal plasticity finite element and phase field methods for the prediction of SRX kinetics after hot working [J]. Steel Research International, 2014, 85(6): 999–1009. doi: 10.1002/srin.201300191
|
[88] |
KONDO R, TADANO Y, SHIZAWA K. A phase-field model of twinning and detwinning coupled with dislocation-based crystal plasticity for HCP metals [J]. Computational Materials Science, 2014, 95: 672–683. doi: 10.1016/j.commatsci.2014.08.034
|
[89] |
CHEN L, CHEN J, LEBENSOHN R A, et al. An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 829–848. doi: 10.1016/j.cma.2014.12.007
|
[90] |
COTTURA M, APPOLAIRE B, FINEL A, et al. Coupling the phase field method for diffusive transformations with dislocation density-based crystal plasticity: application to Ni-based superalloys [J]. Journal of the Mechanics and Physics of Solids, 2016, 94: 473–489. doi: 10.1016/j.jmps.2016.05.016
|
[91] |
PARANJAPE H M, MANCHIRAJU S, ANDERSON P M. A phase field: finite element approach to model the interaction between phase transformations and plasticity in shape memory alloys [J]. International Journal of Plasticity, 2016, 80: 1–18. doi: 10.1016/j.ijplas.2015.12.007
|
[92] |
IDESMAN A V, LEVITAS V I, STEIN E. Elastoplastic materials with martensitic phase transition and twinning at finite strains: numerical solution with the finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 173(1/2): 71–98.
|
[93] |
HUANG M, BRINSON L C. A Multivariant model for single crystal shape memory alloy behavior [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1379–1409. doi: 10.1016/S0022-5096(97)00080-X
|
[94] |
BHATTACHARYYA A, WENG G J. An energy criterion for the stress-induced martensitic transformation in a ductile system [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(11): 1699–1724. doi: 10.1016/0022-5096(94)90068-X
|
[95] |
STRINGFELLOW R G, PARKS D M, OLSON G B. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels [J]. Acta Metallurgica et Materialia, 1992, 40(7): 1703–1716. doi: 10.1016/0956-7151(92)90114-T
|
[96] |
LEBLOND J B, MOTTET G, DEVAUX J C. A theoretical and numerical approach to the plastic behaviour of steels during phase transformations: Ⅰ. derivation of general relations [J]. Journal of the Mechanics and Physics of Solids, 1986, 34(4): 395–409. doi: 10.1016/0022-5096(86)90009-8
|
[97] |
THAMBURAJA P, ANAND L. Polycrystalline shape-memory materials: effect of crystallographic texture [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(4): 709–737. doi: 10.1016/S0022-5096(00)00061-2
|
[98] |
MA A X, HARTMAIER A. A study of deformation and phase transformation coupling for TRIP-assisted steels [J]. International Journal of Plasticity, 2015, 64: 40–55. doi: 10.1016/j.ijplas.2014.07.008
|
[99] |
SUN C Y, GUO N, FU M W, et al. Modeling of slip, twinning and transformation induced plastic deformation for TWIP steel based on crystal plasticity [J]. International Journal of Plasticity, 2016, 76: 186–212. doi: 10.1016/j.ijplas.2015.08.003
|
[100] |
LEE M G, KIM S J, HAN H N. Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite [J]. International Journal of Plasticity, 2010, 26(5): 688–710. doi: 10.1016/j.ijplas.2009.10.001
|
[101] |
TURTELTAUB S, SUIKER A S J. Transformation-induced plasticity in ferrous alloys [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1747–1788. doi: 10.1016/j.jmps.2005.03.004
|
[102] |
TURTELTAUB S, SUIKER A S J. A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations [J]. International Journal of Solids and Structures, 2006, 43(14/15): 4509–4545.
|
[103] |
SUIKER A S J, TURTELTAUB S. Computational modelling of plasticity induced by martensitic phase transformations [J]. International Journal for Numerical Methods in Engineering, 2005, 63(12): 1655–1693. doi: 10.1002/nme.1327
|
[104] |
MANCHIRAJU S, ANDERSON P M. Coupling between martensitic phase transformations and plasticity: a microstructure-based finite element model [J]. International Journal of Plasticity, 2010, 26(10): 1508–1526. doi: 10.1016/j.ijplas.2010.01.009
|
[105] |
FENG B, BRONKHORST C A, ADDESSIO F L, et al. Coupled elasticity, plastic slip, and twinning in single crystal titanium loaded by split-Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 274–297. doi: 10.1016/j.jmps.2018.06.018
|
[106] |
GREEFF C W. Alpha-omega transition in Ti: equation of state and kinetics [C]//AIP Conference Proceedings. Atlanta, Georgia (USA). AIP, 2002: 225–228.
|
[107] |
TJAHJANTO D D, TURTELTAUB S, SUIKER A S J. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels [J]. Continuum Mechanics and Thermodynamics, 2008, 19(7): 399–422. doi: 10.1007/s00161-007-0061-x
|
[108] |
THAMBURAJA P. A finite-deformation-based phenomenological theory for shape-memory alloys [J]. International Journal of Plasticity, 2010, 26(8): 1195–1219. doi: 10.1016/j.ijplas.2009.12.004
|
[109] |
THAMBURAJA P, PAN H, CHAU F S. Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti-Ni sheet [J]. Acta Materialia, 2005, 53(14): 3821–3831. doi: 10.1016/j.actamat.2005.03.054
|
[110] |
THAMBURAJA P. Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(4): 825–856. doi: 10.1016/j.jmps.2004.11.004
|
[111] |
BARTON N R, BENSON D J, BECKER R. Crystal level continuum modelling of phase transformations: the α↔ε transformation in iron [J]. Modelling and Simulation in Materials Science and Engineering, 2005, 13(5): 707–731. doi: 10.1088/0965-0393/13/5/006
|
[112] |
AMOUZOU K E K, RICHETON T, ROTH A, et al. Micromechanical modeling of hardening mechanisms in commercially pure α-titanium in tensile condition [J]. International Journal of Plasticity, 2016, 80: 222–240. doi: 10.1016/j.ijplas.2015.09.008
|
[113] |
GURAO N P, KAPOOR R, SUWAS S. Deformation behaviour of commercially pure titanium at extreme strain rates [J]. Acta Materialia, 2011, 59(9): 3431–3446. doi: 10.1016/j.actamat.2011.02.018
|
[114] |
MEREDITH C S, LLOYD J T, SANO T. The quasi-static and dynamic response of fine-grained Mg alloy AMX602: an experimental and computational study [J]. Materials Science and Engineering A, 2016, 673: 73–82. doi: 10.1016/j.msea.2016.07.035
|
[115] |
ROHATGI A, VECCHIO K S. The variation of dislocation density as a function of the stacking fault energy in shock-deformed FCC materials [J]. Materials Science and Engineering A, 2002, 328(1/2): 256–266.
|
[116] |
KALIDINDI S R. Incorporation of deformation twinning in crystal plasticity models [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(2): 267–290. doi: 10.1016/S0022-5096(97)00051-3
|
[117] |
CLAYTON J D. Nonlinear elastic and inelastic models for shock compression of crystalline solids [M]. Cham: Springer International Publishing, 2019.
|
[118] |
CLAYTON J. A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465(2101): 307–334. doi: 10.1098/rspa.2008.0281
|
[119] |
SALEM A A, KALIDINDI S R, DOHERTY R D, et al. Strain hardening due to deformation twinning in α-titanium: mechanisms [J]. Metallurgical and Materials Transactions A, 2006, 37(1): 259–268. doi: 10.1007/s11661-006-0171-2
|
[120] |
SALEM A A, KALIDINDI S R, SEMIATIN S L. Strain hardening due to deformation twinning in α-titanium: constitutive relations and crystal-plasticity modeling [J]. Acta Materialia, 2005, 53(12): 3495–3502. doi: 10.1016/j.actamat.2005.04.014
|
[121] |
KALIDINDI S R. A crystal plasticity framework for deformation twinning [M]//Continuum Scale Simulation of Engineering Materials. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005: 543–560.
|
[122] |
ARDELJAN M, BEYERLEIN I J, MCWILLIAMS B A, et al. Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy [J]. International Journal of Plasticity, 2016, 83: 90–109. doi: 10.1016/j.ijplas.2016.04.005
|
[123] |
ARDELJAN M, MCCABE R J, BEYERLEIN I J, et al. Explicit incorporation of deformation twins into crystal plasticity finite element models [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 295: 396–413. doi: 10.1016/j.cma.2015.07.003
|
[124] |
BEYERLEIN I J, TOMÉ C N. A dislocation-based constitutive law for pure Zr including temperature effects [J]. International Journal of Plasticity, 2008, 24(5): 867–895. doi: 10.1016/j.ijplas.2007.07.017
|
[125] |
MADEC R, DEVINCRE B, KUBIN L P. From dislocation junctions to forest hardening [J]. Physical Review Letters, 2002, 89(25): 255508. doi: 10.1103/PhysRevLett.89.255508
|
[126] |
SONG S G, GRAY G T III. Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti: Ⅰ. application of the coincidence site lattice (CSL) theory to twinning problems in hcp structures [J]. Acta Metallurgica et Materialia, 1995, 43(6): 2325–2337. doi: 10.1016/0956-7151(94)00433-1
|
[127] |
SONG S G, GRAY G T III. Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti: Ⅱ. TEM study of twin morphology and defect reactions during twinning [J]. Acta Metallurgica et Materialia, 1995, 43(6): 2339–2350. doi: 10.1016/0956-7151(94)00434-X
|
[128] |
SONG S G, GRAY G T. Influence of temperature and strain rate on slip and twinning behavior of Zr [J]. Metallurgical and Materials Transactions A, 1995, 26(10): 2665–2675. doi: 10.1007/BF02669423
|
[129] |
朱兆祥, 李永池, 王肖钧. 爆炸作用下钢板层裂的数值分析 [J]. 应用数学和力学, 1981, 2(4): 353–368.
ZHU Z X, LI Y C, WANG X J. Numerical analysis of the spallation of steel target under the explosive loading [J]. Applied Mathematics and Mechanics, 1981, 2(4): 353–368.
|
[130] |
RINEHART J S. Some quantitative data bearing on the scabbing of metals under explosive attack [J]. Journal of Applied Physics, 1951, 22(5): 555–560. doi: 10.1063/1.1700005
|
[131] |
ZHANG K S, ZHANG D, FENG R, et al. Microdamage in polycrystalline ceramics under dynamic compression and tension [J]. Journal of Applied Physics, 2005, 98(2): 023505. doi: 10.1063/1.1944908
|
[132] |
LLOYD J T, MATEJUNAS A J, BECKER R, et al. Dynamic tensile failure of rolled magnesium: simulations and experiments quantifying the role of texture and second-phase particles [J]. International Journal of Plasticity, 2019, 114: 174–195. doi: 10.1016/j.ijplas.2018.11.002
|
[133] |
LING C, BESSON J, FOREST S, et al. An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations [J]. International Journal of Plasticity, 2016, 84: 58–87. doi: 10.1016/j.ijplas.2016.05.001
|
[134] |
NGUYEN T, LUSCHER D J, WILKERSON J W. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals [J]. Journal of the Mechanics and Physics of Solids, 2017, 108: 1–29. doi: 10.1016/j.jmps.2017.07.020
|
[135] |
NGUYEN T, LUSCHER D J, WILKERSON J W. The role of elastic and plastic anisotropy in intergranular spall failure [J]. Acta Materialia, 2019, 168: 1–12. doi: 10.1016/j.actamat.2019.01.033
|
[136] |
BAI Y L, DODD B. Adiabatic shear localization: occurrence, theories, and applications [M]. Oxford: Pergamon Press, 1992.
|
[137] |
DODD B, BAI Y L. Adiabatic shear localization: frontiers and advances [M]. Elsevier, 2012.
|
[138] |
ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. doi: 10.1063/1.1707363
|
[139] |
HINES J A, VECCHIO K S, AHZI S. A model for microstructure evolution in adiabatic shear bands [J]. Metallurgical and Materials Transactions A, 1998, 29(1): 191–203. doi: 10.1007/s11661-998-0172-4
|
[140] |
LEE W B, WANG H, CHAN C Y, et al. Finite element modelling of shear angle and cutting force variation induced by material anisotropy in ultra-precision diamond turning [J]. International Journal of Machine Tools and Manufacture, 2013, 75: 82–86. doi: 10.1016/j.ijmachtools.2013.09.007
|
[141] |
BRONKHORST C A, HANSEN B L, CERRETA E K, et al. Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(11): 2351–2383. doi: 10.1016/j.jmps.2007.03.019
|
[142] |
WRIGHT T W. 绝热剪切带的数理分析 [M]. 李云凯, 孙川, 王云飞, 译. 北京: 北京理工大学出版社, 2013.
WRIGHT T W. The physics and mathematics of adiabatic shear bands [M]. Translated by LI Y K, SUN C, WANG Y F. Beijing: Beijing Institute of Technology Press, 2003.
|
[143] |
BARGMANN S, EKH M. Microscopic temperature field prediction during adiabatic loading using gradient extended crystal plasticity [J]. International Journal of Solids and Structures, 2013, 50(6): 899–906. doi: 10.1016/j.ijsolstr.2012.11.010
|
[144] |
CULVER R S. Thermal instability strain in dynamic plastic deformation [M]//Metallurgical Effects at High Strain Rates. Boston: Springer, 1973: 519–530.
|
[145] |
BAI Y L. A criterion for thermo-plastic shear instability [M]//Shock Waves and High-Strain-Rate Phenomena in Metals. Boston: Springer, 1981: 277–284.
|
[146] |
SCHOENFELD S E, WRIGHT T W. A failure criterion based on material instability [J]. International Journal of Solids and Structures, 2003, 40(12): 3021–3037. doi: 10.1016/S0020-7683(03)00059-3
|
[147] |
ZHANG Z, EAKINS D E, DUNNE F P E. On the formation of adiabatic shear bands in textured HCP polycrystals [J]. International Journal of Plasticity, 2016, 79: 196–216. doi: 10.1016/j.ijplas.2015.12.004
|
[148] |
RECHT R F. Catastrophic thermoplastic shear [J]. Journal of Applied Mechanics, 1964, 31(2): 189–193. doi: 10.1115/1.3629585
|
[149] |
DUSZEK-PERZYNA M K, PERZYNA P. Analysis of the influence of non-schmid and thermal effects on adiabatic shear band localization in elastic-plastic single crystals [M]//Finite Inelastic Deformations: Theory and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992: 155–165.
|
[150] |
DUSZEK-PERZYNA M K, PERZYNA P. Adiabatic shear band localization in elastic-plastic single crystals [J]. International Journal of Solids and Structures, 1993, 30(1): 61–89. doi: 10.1016/0020-7683(93)90132-Q
|
[151] |
DUSZEK-PERZYNA M K, PERZYNA P. Adiabatic shear band localization of inelastic single crystals in symmetric double-slip process [J]. Archive of Applied Mechanics, 1996, 66(6): 369. doi: 10.1007/s004190050076
|
[152] |
RITTEL D, WANG Z G, MERZER M. Adiabatic shear failure and dynamic stored energy of cold work [J]. Physical Review Letters, 2006, 96(7): 075502. doi: 10.1103/PhysRevLett.96.075502
|
[153] |
BOUBAKER H B, MAREAU C, AYED Y, et al. Development of a hyperelastic constitutive model based on the crystal plasticity theory for the simulation of machining operations [J]. Procedia CIRP, 2019, 82: 20–25. doi: 10.1016/j.procir.2019.04.336
|