Volume 34 Issue 5
Sep 2020
Turn off MathJax
Article Contents
CHEN Weidong, MEN Heng, TIAN Xiaogeng. Energy Absorption of Folded Shrink Tubes with Gradient Stiffness[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055301. doi: 10.11858/gywlxb.20190873
Citation: CHEN Weidong, MEN Heng, TIAN Xiaogeng. Energy Absorption of Folded Shrink Tubes with Gradient Stiffness[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055301. doi: 10.11858/gywlxb.20190873

Energy Absorption of Folded Shrink Tubes with Gradient Stiffness

doi: 10.11858/gywlxb.20190873
  • Received Date: 26 Dec 2019
  • Rev Recd Date: 20 Jan 2020
  • Thin-walled tube is a common energy-absorbing structure. The introduction of folds in thin-walled tube can induce the deformation of thin-walled tube, reduce the initial peak force of buckling of thin-walled tube and improve the energy absorption of thin-walled tube effectively. At present, when the folded tubes subjects to axial compression, the crushing force decreases significantly after the initial peak force, which lowers the energy absorption performance of folded tubes. In order to further reduce the initial peak force and increase the total energy absorbed of the folded tube, different forms of folded tube are introduced into the square tube to obtain a folded shrink tube. The relation between force and displacement and deformation of the designed folded tube under the quasi-static compression is obtained by using ABAQUS/Explicit. The results show that the collapse force of the folded shrink tube is in the form of a gradient during the compression process. Compared with traditional square tube and diamond tube, the folded shrink tube not only has lower initial peak force, but also can greatly improve the total energy absorption. The influence of geometric parameters on the performance of the folded tube was studied systematically. The best performance folded shrink tubes were obtained.

     

  • loading
  • [1]
    SINGACE A A. Axial crushing analysis of tubes deforming in the multi-lobe mode [J]. International Journal of Mechanical Sciences, 1999, 41(7): 865–890. doi: 10.1016/S0020-7403(98)00052-6
    [2]
    WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. doi: 10.1115/1.3167137
    [3]
    SONG J, CHEN Y, LU G X. Light-weight thin-walled structures with patterned windows under axial crushing [J]. International Journal of Mechanical Sciences, 2013, 66: 239–248. doi: 10.1016/j.ijmecsci.2012.11.014
    [4]
    CHENG Q W, ALTENHOF W, LI L. Experimental investigations on the crush behaviour of AA6061-T6 aluminum square tubes with different types of through-hole discontinuities [J]. Thin-Walled Structures, 2006, 44(4): 441–454. doi: 10.1016/j.tws.2006.03.017
    [5]
    HAN H P, TAHERI F, PEG G N. Quasi-static and dynamic crushing behaviors of aluminum and steel tubes with a cutout [J]. Thin-Walled Structures, 2007, 45(3): 283–300. doi: 10.1016/j.tws.2007.02.010
    [6]
    DANESHI G H, HOSSEINIPOUR S J. Grooves effect on crashworthiness characteristics of thin-walled tubes under axial compression [J]. Materials & Design, 2002, 23(7): 611–617. doi: 10.1016/S0261-3069(02)00052-3
    [7]
    EYVAZIAN A, HABIBI M K, HAMOUDA A M, et al. Axial crushing behavior and energy absorption efficiency of corrugated tubes [J]. Materials & Design, 2014, 54: 1028–1038. doi: 10.1016/j.matdes.2013.09.031
    [8]
    ZHANG X W, SU H, YU T X. Energy absorption of an axially crushed square tube with a buckling initiator [J]. International Journal of Impact Engineering, 2009, 36(3): 402–417. doi: 10.1016/j.ijimpeng.2008.02.002
    [9]
    HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475–507. doi: 10.1016/S0734-743X(99)00170-0
    [10]
    KIM H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency [J]. Thin-Walled Structures, 2002, 40(4): 311–327. doi: 10.1016/S0263-8231(01)00069-6
    [11]
    ZHANG X, HU H H. Crushing analysis of polygonal columns and angle elements [J]. International Journal of Impact Engineering, 2010, 37(4): 441–451. doi: 10.1016/j.ijimpeng.2009.06.009
    [12]
    TANG Z L, LIU S T, ZHANG Z H. Energy absorption properties of non-convex multi-corner thin-walled columns [J]. Thin-Walled Structures, 2012, 51: 112–120. doi: 10.1016/j.tws.2011.10.005
    [13]
    李笑, 李明. 折纸及其折痕设计研究综述 [J]. 力学学报, 2018, 50(3): 467–476. doi: 10.6052/0459-1879-18-031

    LI X, LI M. A review of origami and its crease design [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467–476. doi: 10.6052/0459-1879-18-031
    [14]
    SONG J, CHEN Y, LU G X. Axial crushing of thin-walled structures with origami patterns [J]. Thin-Walled Structures, 2012, 54: 65–71. doi: 10.1016/j.tws.2012.02.007
    [15]
    MA J Y, HOU D G, CHEN Y, et al. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: numerical simulation [J]. Thin-Walled Structures, 2016, 100: 38–47. doi: 10.1016/j.tws.2015.11.023
    [16]
    MA J Y, YOU Z. Energy absorption of thin-walled square tubes with a prefolded origami pattern—part I: geometry and numerical simulation [J]. Journal of Applied Mechanics, 2014, 81(1): 011003. doi: 10.1115/1.4024405
    [17]
    ZHOU C H, WANG B, LUO H Z, et al. Quasi-static axial compression of origami crash boxes [J]. International Journal of Applied Mechanics, 2017, 9(5): 1750066. doi: 10.1142/S1758825117500661
    [18]
    ZHOU C H, WANG B, MA J Y, et al. Dynamic axial crushing of origami crash boxes [J]. International Journal of Mechanical Sciences, 2016, 118: 1–12. doi: 10.1016/j.ijmecsci.2016.09.001
    [19]
    YANG K, XU S Q, SHEN J H, et al. Energy absorption of thin-walled tubes with pre-folded origami patterns: numerical simulation and experimental verification [J]. Thin-Walled Structures, 2016, 103: 33–44. doi: 10.1016/j.tws.2016.02.007
    [20]
    YUAN L, SHI H Y, MA J Y, et al. Quasi-static impact of origami crash boxes with various profiles [J]. Thin-Walled Structures, 2019, 141: 435–446. doi: 10.1016/j.tws.2019.04.028
    [21]
    WANG B, ZHOU C H. The imperfection-sensitivity of origami crash boxes [J]. International Journal of Mechanical Sciences, 2017, 121: 58–66. doi: 10.1016/j.ijmecsci.2016.11.027
    [22]
    ZHOU C H, ZHOU Y, WANG B. Crashworthiness design for trapezoid origami crash boxes [J]. Thin-Walled Structures, 2017, 117: 257–267. doi: 10.1016/j.tws.2017.03.022
    [23]
    XIE R K, HOU D G, MA J Y, et al. Geometrically graded origami tubes [C]//Proceedings of ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Carolina: ASME, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(4746) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return