Citation: | LIU Shanshan, LIU Yajun, ZHANG Yingjie, LI Zhiqiang. Low-Velocity Impact Response of Carbon Fiber-Aluminum Foam Sandwich Plate[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872 |
[1] |
王巍, 安子军, 彭春彦, 等. 泡沫铝填充钢/铝复合管轴向抗冲击吸能特性 [J]. 哈尔滨工程大学学报, 2017, 38(7): 1093–1099.
WANG W, AN Z J, PENG C Y, et al. Simulative research on the energy absorption characteristics of aluminum foam-filled steel/Al clad tube under axial impact loading [J]. Journal of Harbin Engineering University, 2017, 38(7): 1093–1099.
|
[2] |
骆伟, 谢伟, 刘敬喜. 芯层几何构形对复合材料波纹夹层结构冲击特性的影响 [J]. 江苏科技大学学报(自然科学版), 2018, 32(1): 21–26.
LUO W, XIE W, LIU J X. Research on dynamic characteristics of a sandwich structures with various core shapes under impact loads [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2018, 32(1): 21–26.
|
[3] |
TITA V, CARVALHO J D, VANDEPITTE D. Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches [J]. Composite Structures, 2008, 83(4): 413–428. doi: 10.1016/j.compstruct.2007.06.003
|
[4] |
韩守红, 吕振华. 铝泡沫夹层结构抗爆炸性能仿真分析及优化 [J]. 兵工学报, 2010, 31(11): 1468–1474.
HAN S H, LÜ Z H. Numerical simulation of blast-resistant performance of aluminum foam sandwich structures and optimization [J]. Acta Armamentarii, 2010, 31(11): 1468–1474.
|
[5] |
李志斌, 卢芳云. 泡沫铝夹芯板压入和侵彻性能的实验研究 [J]. 振动与冲击, 2015(4): 1–5.
LI Z B, LU F Y. Tests for indentation and perforation of sandwich panels with aluminium foam core [J]. Journal of Vibration and Shock, 2015(4): 1–5.
|
[6] |
赵金华, 曹海琳, 晏义伍, 等. 泡沫铝夹层结构复合材料低速冲击性能 [J]. 材料工程, 2018, 46(1): 92–98. doi: 10.11868/j.issn.1001-4381.2015.001295
ZHAO J H, CAO H L, YAN Y W, et al. Low velocity impact properties of aluminum foam sandwich structural composite [J]. Journal of Materials Engineering, 2018, 46(1): 92–98. doi: 10.11868/j.issn.1001-4381.2015.001295
|
[7] |
荣誉. 梯度泡沫金属力学性能的Lagrangian分析 [D]. 太原: 太原理工大学, 2018.
|
[8] |
HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47: 329–334. doi: 10.1115/1.3153664
|
[9] |
谭开忍, 肖熙. 含有腐蚀缺陷海底管道极限载荷分析 [J]. 海洋工程, 2006, 24(3): 63–67. doi: 10.3969/j.issn.1005-9865.2006.03.010
TAN K R, XIAO X. Analysis on limit load of corroded submarine pipelines [J]. The Ocean Engineering, 2006, 24(3): 63–67. doi: 10.3969/j.issn.1005-9865.2006.03.010
|
[10] |
沈鋆. 极限载荷分析法在压力容器分析设计中的应用 [J]. 石油化工设备, 2011, 40(4): 35–38. doi: 10.3969/j.issn.1000-7466.2011.04.010
SHEN J. Limit load analysis application in pressure vessel analytical design [J]. Petro-Chemical Equipment, 2011, 40(4): 35–38. doi: 10.3969/j.issn.1000-7466.2011.04.010
|
[11] |
肖先林, 王长金, 赵桂平. 碳纤维复合材料-泡沫铝夹芯板的冲击响应 [J]. 振动与冲击, 2018, 37(15): 110–117.
XIAO X L, WANG C J, ZHAO G P. Dynamic responses of carbon fiber composite sandwich panels with aluminum foam core subjected to impact loading [J]. Journal of Vibration and Shock, 2018, 37(15): 110–117.
|
[12] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strains rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
|
[13] |
熊明洋, 向忠, 胡旭东, 等. 基于ABAQUS的CCF300碳纤维层合板低速冲击破坏数值模拟 [J]. 轻工机械, 2017, 35(4): 27–32. doi: 10.3969/j.issn.1005-2895.2017.04.006
XIONG M Y, XIANG Z, HU X D, et al. Numerical simulation of low velocity impact failure of CCF300 carbon fiber laminate based on ABAQUS [J]. Light Industry Machinery, 2017, 35(4): 27–32. doi: 10.3969/j.issn.1005-2895.2017.04.006
|
[14] |
陈县辉. 基于内聚力单元的层合板低速冲击响应模拟研究 [D]. 太原: 中北大学, 2014.
|
[15] |
STUBSS C. Compilation strategies: alternate approaches to achieve low power consumption [J]. Electronic Component News, 2008, 52(4): 11–113.
|
[16] |
FOO C C, SEAH L K, CHAI G B. Low-velocity impact failure of aluminium honeycomb sandwich panels [J]. Composite Structures, 2008, 85(1): 20–28. doi: 10.1016/j.compstruct.2007.10.016
|
[17] |
SAHU S, MONDAL D P, CHO J U, et al. Low-velocity impact characteristics of closed cell AA2014-SiCp composite foam [J]. Composites Part B: Engineering, 2019, 160: 394–401. doi: 10.1016/j.compositesb.2018.12.054
|