Citation: | YIN Xia, ZHANG Jianbo, DING Yang. Raman Scattering of Spin-Orbit Mott Insulator Sr2IrO4 at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040103. doi: 10.11858/gywlxb.20190865 |
[1] |
WITCZAK-KREMPA W, CHEN G, KIM Y B, et al. Correlated quantum phenomena in the strong spin-orbit regime [J]. Annual Review of Condensed Matter Physics, 2014, 5(1): 57–82. doi: 10.1146/annurev-conmatphys-020911-125138
|
[2] |
WANG F, SENTHIL T. Twisted hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity [J]. Physical Review Letters, 2011, 106(13): 136402.
|
[3] |
KITAGAWA K, TAKAYAMA T, MATSUMOTO Y, et al. A spin-orbital-entangled quantum liquid on a honeycomb lattice [J]. Nature, 2018, 554(7692): 341–345. doi: 10.1038/nature25482
|
[4] |
PRICE C C, PERKINS N B. Critical properties of the Kitaev-Heisenberg model [J]. Physical Review Letters, 2012, 109(18): 187201. doi: 10.1103/PhysRevLett.109.187201
|
[5] |
CHALOUPKA J, JACKELI G, KHALIULLIN G. Zigzag magnetic order in the iridium oxide Na2IrO3 [J]. Physical Review Letters, 2013, 110(9): 097204. doi: 10.1103/PhysRevLett.110.097204
|
[6] |
WATANABE H, SHIRAKAWA T, YUNOKI S. Monte carlo study of an unconventional superconducting phase in iridium oxide Jeff = 1/2 mott insulators induced by carrier doping [J]. Physical Review Letters, 2013, 110: 027002. doi: 10.1103/PhysRevLett.110.027002
|
[7] |
YONEZAWA S, MURAOKA Y, MATSUSHITA Y, et al. Superconductivity in a pyrochlore-related oxide KOs2O6 [J]. Journal of Physics:Condensed Matter, 2004, 16(3): L9–L12. doi: 10.1088/0953-8984/16/3/L01
|
[8] |
KIM B J, JIN H, MOON S J, et al. Novel Jeff = 1/2 mott state induced by relativistic spin-orbit coupling in Sr2IrO4 [J]. Physical Review Letters, 2008, 101(7): 076402. doi: 10.1103/PhysRevLett.101.076402
|
[9] |
RAU J G, LEE K H, KEE H Y. Spin-orbit physics giving rise to novel phases in correlated systems: iridates and related materials [J]. Condensed Matter Physics, 2015, 7(7).
|
[10] |
ARITA R, KUNEŠ J, KOZHEVNIKOV A V, et al. Ab initio studies on the interplay between spin-orbit interaction and coulomb correlation in Sr2IrO4 and Ba2IrO4 [J]. Physical Review Letters, 2012, 108(8): 086403. doi: 10.1103/PhysRevLett.108.086403
|
[11] |
LI Q, CAO G, OKAMOTO S, et al. Atomically resolved spectroscopic study of Sr2IrO4: experiment and theory [J]. Scientific Reports, 2013: 3.
|
[12] |
CAO G, SCHLOTTMANN P. The challenge of spin-orbit-tuned ground states in iridates: a key issues review [J]. Reports on Progress in Physics Physical Society, 2018, 81(4): 042502. doi: 10.1088/1361-6633/aaa979
|
[13] |
GRETARSSON H, SUNG N H, HOEPPNER M, et al. Two-magnon Raman scattering and Pseudospin-Lattice interactions in Sr2IrO4 and Sr3Ir2O7 [J]. Physical Review Letters, 2016, 116(13): 136401. doi: 10.1103/PhysRevLett.116.136401
|
[14] |
CAO G, TERZIC J, ZHAO H D, et al. Electrical control of structural and physical properties via strong spin-orbit interactions in Sr2IrO4 [J]. Physical Review Letters, 2017, 120(1): 017201.
|
[15] |
LIU H, KHALIULLIN G. Pseudo Jahn-Teller effect and magnetoelastic coupling in spin-orbit mott insulators [J]. Physical Review Letters, 2019, 122(5): 057203. doi: 10.1103/PhysRevLett.122.057203
|
[16] |
HASKEL D, FABBRIS G, ZHERNENKOV M, et al. Pressure tuning of the spin-orbit coupled ground state in Sr2IrO4 [J]. Physical Review Letters, 2012, 109(2): 027204. doi: 10.1103/PhysRevLett.109.027204
|
[17] |
SAMANTA K, ARDITO F M, SOUZA-NETO N M, et al. First-order structural transition and pressure-induced lattice/phonon anomalies in Sr2IrO4 [J]. Physical Review B, 2018, 98: 094101. doi: 10.1103/PhysRevB.98.094101
|
[18] |
CHEN C, ZHOU Y, CHEN X, et al. Persistent insulator: avoidance of metallization at megabar pressures in strongly spin-orbit-coupled Sr2IrO4 [EB/OL]. arXiv: 1910. 10291 [2019-12-05].
|
[19] |
CHIJIOKE A D, NELLIS W J, SOLDATOV A, et al. The ruby pressure standard to 150 GPa [J]. Journal of Applied Physics, 2005, 98(11): 094112.
|
[20] |
AROYO, MOIS ILIA, PEREZ-MATO, et al. Bilbao crystallographic server: I. databases and crystallographic computing programs [J]. Zeitschrift Für Kristallographie, 2006, 221(1): 15.
|
[21] |
CETIN M F, LEMMENS P, GNEZDILOV V, et al. Crossover from coherent to incoherent scattering in spin-orbit dominated Sr2IrO4 [J]. Physical Review B, 2012, 85(19): 195148. doi: 10.1103/PhysRevB.85.195148
|
[22] |
MOON S J, JIN H, CHOI W S, et al. Temperature dependence of the electronic structure of the Jeff = 1/2 mott insulator Sr2IrO4 studied by optical spectroscopy [J]. Physical Review B, 2009, 80(19): 195110. doi: 10.1103/PhysRevB.80.195110
|
[23] |
ZHANG J B, YAN D Y, SORB Y A, et al. Lattice frustration in spin-orbit mott insulator Sr3Ir2O7 at high pressure [J]. NPJ Quantum Mater, 2019, 4(23).
|
[24] |
CRAWFORD M K, SUBRAMANIAN M A, HARLOW R L, et al. Structural and magnetic studies of Sr2IrO4 [J]. Physical Review B, 1994, 49(13): 9198–9201. doi: 10.1103/PhysRevB.49.9198
|
[25] |
YE F, CHI S, CHAKOUMAKOS B C, et al. The magnetic and crystal structures of Sr2IrO4: a neutron diffraction study [J]. Physical Review B, 2013, 87(14): 545–579.
|
[26] |
KIM B J, OHSUMI H, KOMESU T, et al. Phase-sensitive observation of a spin-orbital mott state in Sr2IrO4 [J]. Science, 2009, 323(5919): 1329–1332. doi: 10.1126/science.1167106
|