Volume 34 Issue 4
Jul 2020
Turn off MathJax
Article Contents
TANG Ruitao, XU Liuyun, WEN Heming, WANG Zihao. A Macroscopic Dynamic Constitutive Model for Ceramic Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044201. doi: 10.11858/gywlxb.20190863
Citation: TANG Ruitao, XU Liuyun, WEN Heming, WANG Zihao. A Macroscopic Dynamic Constitutive Model for Ceramic Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044201. doi: 10.11858/gywlxb.20190863

A Macroscopic Dynamic Constitutive Model for Ceramic Materials

doi: 10.11858/gywlxb.20190863
More Information
  • Author Bio:

    TANG Ruitao (1989-), male, doctoral student, major in impact dynamics. E-mail: rttang@mail.ustc.edu.cn

  • Corresponding author: WEN Heming (1965-), male, Ph.D, professor, major in impact dynamics. E-mail: hmwen@ustc.edu.cn
  • Received Date: 06 Dec 2019
  • Rev Recd Date: 06 Jan 2020
  • A macroscopic constitutive model is presented herein for ceramic materials subjected to dynamic loadings by closely following a previous study on concrete. The equation of state is described by a polynomial equation and the strength model takes into account various effects such as pressure hardening, Lode angle, strain rate, shear damage and tensile softening. In particular, the strength surface of ceramic materials is characterized by a new function which levels out at very high pressures and strain rate effect is taken into account by dynamic increase factor (DIF) which excludes inertial effect. The present model is verified against some available experimental data for ceramic materials in terms of pressure-volumetric response, quasi-static strength surface and strain rate effect. The model is further verified against the data for triaxial test by single element simulation approach and the test data for depth of penetration in AD99.5/RHA struck by tungsten alloy penetrators. Furthermore, comparisons are also made between numerical results of the present model and the JH-2 model. It is demonstrated that the present model can be employed to describe the mechanical behavior of ceramic materials under different loading conditions with reasonable confidence and is advantageous over the existing model.

     

  • loading
  • [1]
    FAHRENTHOLD E P. A continuum damage model for fracture of brittle solids under dynamic loading [J]. Journal of Applied Mechanics, 1991, 58(4): 904–909. doi: 10.1115/1.2897704
    [2]
    RAJENDRAN A M. Modeling the impact behavior of AD85 ceramic under multiaxial loading [J]. International Journal of Impact Engineering, 1994, 15(6): 749–768. doi: 10.1016/0734-743X(94)90033-H
    [3]
    JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. High Pressure Science and Technology, 2008, 309(1): 981–984.
    [4]
    SIMHA C H, BLESS S, BEDFORD A, et al. Computational modeling of the penetration response of a high-purity ceramic [J]. International Journal of Impact Engineering, 2002, 27(1): 65–86. doi: 10.1016/S0734-743X(01)00036-7
    [5]
    RAVICHANDRAN G, SUBHASH G. A micromechanical model for high strain rate behavior of ceramics [J]. International Journal of Solids and Structures, 1995: 2627–2646.
    [6]
    ESPINOSA H D. On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation [J]. International Journal of Solids and Structures, 1995, 32(21): 3105–3128. doi: 10.1016/0020-7683(94)00300-L
    [7]
    ESPINOSA H D, XU Y, BRAR N S. Micromechanics of failure waves in glass: Ⅱ, modeling [J]. Journal of the American Ceramic Society, 1997, 80(8): 2074–2085.
    [8]
    STEINBERG D J. Computer studies of the dynamic strength of ceramics [M]//Shock Waves. Berlin: Springer, 1992: 415–422.
    [9]
    XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. doi: 10.1016/j.ijimpeng.2016.01.003
    [10]
    XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. doi: 10.1016/j.ijimpeng.2013.04.005
    [11]
    ZHAO F Q, WEN H M. A comment on the maximum dynamic tensile strength of a concrete-like material [J]. International Journal of Impact Engineering, 2018, 115: 32–35. doi: 10.1016/j.ijimpeng.2018.01.009
    [12]
    ZHAO F Q, WEN H M. Effect of free water content on the penetration of concrete [J]. International Journal of Impact Engineering, 2018, 121: 180–190. doi: 10.1016/j.ijimpeng.2018.06.007
    [13]
    BRIDGMAN P W. Linear compressions to 30 000 kg/cm2, including relatively incompressible substances [J]. Proceedings of the American Academy of Arts and Sciences, 1949, 77(6): 189–234. doi: 10.2307/20023541
    [14]
    HART H V, DRICKAMER H G. Effect of high pressure on the lattice parameters of Al2O3 [J]. Journal of Chemical Physics, 1965, 43(7): 2265–2266. doi: 10.1063/1.1697121
    [15]
    SATO Y, AKIMOTO S. Hydrostatic compression of four corundum-type compounds: α-Al2O3, V2O3, Cr2O3, and α-Fe2O [J]. Journal of Applied Physics, 1979, 50(8): 5285–5291. doi: 10.1063/1.326625
    [16]
    BASSETT W A, WEATHERS M S, WU T C, et al. Compressibility of SiC up to 68.4 GPa [J]. Journal of Applied Physics, 1993, 74(6): 3824–3826. doi: 10.1063/1.354476
    [17]
    ROSENBERG Z, BRAR N S, BLESS S J. Dynamic high-pressure properties of AlN ceramic as determined by flyer plate impact [J]. Journal of Applied Physics, 1991, 70(1): 167–171. doi: 10.1063/1.350337
    [18]
    XIA Q, XIA H, RUOFF A L. Pressure induced rocksalt phase of aluminum nitride: a metastable structure at ambient condition [J]. Journal of Applied Physics, 1993, 73(12): 8198–8200. doi: 10.1063/1.353435
    [19]
    UENO M, ONODERA A, SHIMOMURA O, et al. X-ray observation of the structural phase transition of aluminum nitride under high pressure [J]. Physical Review B, 1992, 45(17): 10123. doi: 10.1103/PhysRevB.45.10123
    [20]
    ROSENBERG Z, YAZIV D, YESHURUN Y, et al. Shear strength of shock-loaded alumina as determined with longitudinal and transverse manganin gauges [J]. Journal of Applied Physics, 1987, 62(3): 1120–1122. doi: 10.1063/1.339721
    [21]
    BOURNE N K, MILLETT J, PICKUP I, et al. Delayed failure in shocked silicon carbide [J]. Journal of Applied Physics, 1997, 81(9): 6019–6023. doi: 10.1063/1.364450
    [22]
    FENG R, RAISER G F, GUPTA Y M, et al. Material strength and inelastic deformation of silicon carbide under shock wave compression [J]. Journal of Applied Physics, 1998, 83(1): 79–86. doi: 10.1063/1.366704
    [23]
    PICKUP I M, BARKER A K. Deviatoric strength of silicon carbide subject to shock [J]. AIP Conference Proceedings, 2000, 505(1): 573–576.
    [24]
    LEE M, BRANNON R M, BRONOWSKI D R. Uniaxial and triaxial compression tests of silicon carbide ceramics under quasi-static loading condition [R]. Albuquerque, New Mexico: Sandia National Laboratories, 2005.
    [25]
    CHEN W, RAVICHANDRAN G. Static and dynamic compressive behavior of aluminum nitride under moderate confinement [J]. Journal of the American Ceramic Society, 1996, 79(3): 579–584.
    [26]
    HEARD H C, CLINE C F. Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure [J]. Journal of Materials Science, 1980, 15(8): 1889–1897. doi: 10.1007/BF00550614
    [27]
    WILKINS M L, CLINE C F, HONODEL C A. Fourth progress report of light armor program [R]. Livermore: Lawrence Radiation Laboratories, 1969.
    [28]
    HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering, 2001, 25(3): 211–231. doi: 10.1016/S0734-743X(00)00046-4
    [29]
    ZINSZNER J L, ERZAR B, FORQUIN P, et al. Dynamic fragmentation of an alumina ceramic subjected to shockless spalling: an experimental and numerical study [J]. Journal of the Mechanics and Physics of Solid, 2015, 85: 112–127. doi: 10.1016/j.jmps.2015.08.014
    [30]
    GALVEZ F, RODRIGUEZ J, SANCHEZ V. Tensile strength measurements of ceramic materials at high rates of strain [J]. Le Journal de Physique IV, 1997, 7(C3): 151.
    [31]
    GALVEZ F, RODRIGUEZ J, SANCHEZ V. The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics [J]. International Journal of Impact Engineering, 2002, 27(2): 161–177. doi: 10.1016/S0734-743X(01)00039-2
    [32]
    BOURNE N K. Shock-induced brittle failure of boron carbide [J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458: 1999–2006. doi: 10.1098/rspa.2002.0968
    [33]
    VOGLER T J, REINHART W D, CHHABILDAS L C. Dynamic behavior of boron carbide [J]. Journal of Applied Physics, 2004, 95: 4173–4183. doi: 10.1063/1.1686902
    [34]
    HAYUN S, PARIS V, DARIEL M P, et al. Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering [J]. Journal of the European Ceramic Society, 2009, 29(16): 3395–3400. doi: 10.1016/j.jeurceramsoc.2009.07.007
    [35]
    LUNDBERG P, WESTERLING L, LUNDBERG B. Influence of scale on the penetration of tungsten rods into steel-backed alumina targets [J]. International Journal of Impact Engineering, 1996, 18(4): 403–416. doi: 10.1016/0734-743X(95)00049-G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views(7508) PDF downloads(814) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return