Citation: | TANG Ruitao, XU Liuyun, WEN Heming, WANG Zihao. A Macroscopic Dynamic Constitutive Model for Ceramic Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044201. doi: 10.11858/gywlxb.20190863 |
[1] |
FAHRENTHOLD E P. A continuum damage model for fracture of brittle solids under dynamic loading [J]. Journal of Applied Mechanics, 1991, 58(4): 904–909. doi: 10.1115/1.2897704
|
[2] |
RAJENDRAN A M. Modeling the impact behavior of AD85 ceramic under multiaxial loading [J]. International Journal of Impact Engineering, 1994, 15(6): 749–768. doi: 10.1016/0734-743X(94)90033-H
|
[3] |
JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. High Pressure Science and Technology, 2008, 309(1): 981–984.
|
[4] |
SIMHA C H, BLESS S, BEDFORD A, et al. Computational modeling of the penetration response of a high-purity ceramic [J]. International Journal of Impact Engineering, 2002, 27(1): 65–86. doi: 10.1016/S0734-743X(01)00036-7
|
[5] |
RAVICHANDRAN G, SUBHASH G. A micromechanical model for high strain rate behavior of ceramics [J]. International Journal of Solids and Structures, 1995: 2627–2646.
|
[6] |
ESPINOSA H D. On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation [J]. International Journal of Solids and Structures, 1995, 32(21): 3105–3128. doi: 10.1016/0020-7683(94)00300-L
|
[7] |
ESPINOSA H D, XU Y, BRAR N S. Micromechanics of failure waves in glass: Ⅱ, modeling [J]. Journal of the American Ceramic Society, 1997, 80(8): 2074–2085.
|
[8] |
STEINBERG D J. Computer studies of the dynamic strength of ceramics [M]//Shock Waves. Berlin: Springer, 1992: 415–422.
|
[9] |
XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. doi: 10.1016/j.ijimpeng.2016.01.003
|
[10] |
XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. doi: 10.1016/j.ijimpeng.2013.04.005
|
[11] |
ZHAO F Q, WEN H M. A comment on the maximum dynamic tensile strength of a concrete-like material [J]. International Journal of Impact Engineering, 2018, 115: 32–35. doi: 10.1016/j.ijimpeng.2018.01.009
|
[12] |
ZHAO F Q, WEN H M. Effect of free water content on the penetration of concrete [J]. International Journal of Impact Engineering, 2018, 121: 180–190. doi: 10.1016/j.ijimpeng.2018.06.007
|
[13] |
BRIDGMAN P W. Linear compressions to 30 000 kg/cm2, including relatively incompressible substances [J]. Proceedings of the American Academy of Arts and Sciences, 1949, 77(6): 189–234. doi: 10.2307/20023541
|
[14] |
HART H V, DRICKAMER H G. Effect of high pressure on the lattice parameters of Al2O3 [J]. Journal of Chemical Physics, 1965, 43(7): 2265–2266. doi: 10.1063/1.1697121
|
[15] |
SATO Y, AKIMOTO S. Hydrostatic compression of four corundum-type compounds: α-Al2O3, V2O3, Cr2O3, and α-Fe2O [J]. Journal of Applied Physics, 1979, 50(8): 5285–5291. doi: 10.1063/1.326625
|
[16] |
BASSETT W A, WEATHERS M S, WU T C, et al. Compressibility of SiC up to 68.4 GPa [J]. Journal of Applied Physics, 1993, 74(6): 3824–3826. doi: 10.1063/1.354476
|
[17] |
ROSENBERG Z, BRAR N S, BLESS S J. Dynamic high-pressure properties of AlN ceramic as determined by flyer plate impact [J]. Journal of Applied Physics, 1991, 70(1): 167–171. doi: 10.1063/1.350337
|
[18] |
XIA Q, XIA H, RUOFF A L. Pressure induced rocksalt phase of aluminum nitride: a metastable structure at ambient condition [J]. Journal of Applied Physics, 1993, 73(12): 8198–8200. doi: 10.1063/1.353435
|
[19] |
UENO M, ONODERA A, SHIMOMURA O, et al. X-ray observation of the structural phase transition of aluminum nitride under high pressure [J]. Physical Review B, 1992, 45(17): 10123. doi: 10.1103/PhysRevB.45.10123
|
[20] |
ROSENBERG Z, YAZIV D, YESHURUN Y, et al. Shear strength of shock-loaded alumina as determined with longitudinal and transverse manganin gauges [J]. Journal of Applied Physics, 1987, 62(3): 1120–1122. doi: 10.1063/1.339721
|
[21] |
BOURNE N K, MILLETT J, PICKUP I, et al. Delayed failure in shocked silicon carbide [J]. Journal of Applied Physics, 1997, 81(9): 6019–6023. doi: 10.1063/1.364450
|
[22] |
FENG R, RAISER G F, GUPTA Y M, et al. Material strength and inelastic deformation of silicon carbide under shock wave compression [J]. Journal of Applied Physics, 1998, 83(1): 79–86. doi: 10.1063/1.366704
|
[23] |
PICKUP I M, BARKER A K. Deviatoric strength of silicon carbide subject to shock [J]. AIP Conference Proceedings, 2000, 505(1): 573–576.
|
[24] |
LEE M, BRANNON R M, BRONOWSKI D R. Uniaxial and triaxial compression tests of silicon carbide ceramics under quasi-static loading condition [R]. Albuquerque, New Mexico: Sandia National Laboratories, 2005.
|
[25] |
CHEN W, RAVICHANDRAN G. Static and dynamic compressive behavior of aluminum nitride under moderate confinement [J]. Journal of the American Ceramic Society, 1996, 79(3): 579–584.
|
[26] |
HEARD H C, CLINE C F. Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure [J]. Journal of Materials Science, 1980, 15(8): 1889–1897. doi: 10.1007/BF00550614
|
[27] |
WILKINS M L, CLINE C F, HONODEL C A. Fourth progress report of light armor program [R]. Livermore: Lawrence Radiation Laboratories, 1969.
|
[28] |
HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering, 2001, 25(3): 211–231. doi: 10.1016/S0734-743X(00)00046-4
|
[29] |
ZINSZNER J L, ERZAR B, FORQUIN P, et al. Dynamic fragmentation of an alumina ceramic subjected to shockless spalling: an experimental and numerical study [J]. Journal of the Mechanics and Physics of Solid, 2015, 85: 112–127. doi: 10.1016/j.jmps.2015.08.014
|
[30] |
GALVEZ F, RODRIGUEZ J, SANCHEZ V. Tensile strength measurements of ceramic materials at high rates of strain [J]. Le Journal de Physique IV, 1997, 7(C3): 151.
|
[31] |
GALVEZ F, RODRIGUEZ J, SANCHEZ V. The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics [J]. International Journal of Impact Engineering, 2002, 27(2): 161–177. doi: 10.1016/S0734-743X(01)00039-2
|
[32] |
BOURNE N K. Shock-induced brittle failure of boron carbide [J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458: 1999–2006. doi: 10.1098/rspa.2002.0968
|
[33] |
VOGLER T J, REINHART W D, CHHABILDAS L C. Dynamic behavior of boron carbide [J]. Journal of Applied Physics, 2004, 95: 4173–4183. doi: 10.1063/1.1686902
|
[34] |
HAYUN S, PARIS V, DARIEL M P, et al. Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering [J]. Journal of the European Ceramic Society, 2009, 29(16): 3395–3400. doi: 10.1016/j.jeurceramsoc.2009.07.007
|
[35] |
LUNDBERG P, WESTERLING L, LUNDBERG B. Influence of scale on the penetration of tungsten rods into steel-backed alumina targets [J]. International Journal of Impact Engineering, 1996, 18(4): 403–416. doi: 10.1016/0734-743X(95)00049-G
|