Citation: | WANG Guangyong, YU Rui, MA Dongfang, HOU Yuan. Comparative Study on Dynamic Tensile and Compressive Strength of the Saturated Fine Sandstone[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857 |
[1] |
王宇, 常德龙, 李建林, 等. 复杂应力路径下饱水砂岩宏细观力学特性研究 [J]. 岩土力学, 2016, 37(11): 3105–3114.
WANG Y, CHANG D L, LI J L, et al. Research on macro- and meso-mechanical properties of water-saturated sandstone under complex stress path [J]. Rock and Soil Mechanics, 2016, 37(11): 3105–3114.
|
[2] |
吴疆宇, 冯梅梅, 张文力, 等. 围压及孔隙水压对饱水砂岩能耗特征的影响 [J]. 应用基础与工程科学学报, 2019(1): 180–193.
WU J Y, FENG M M, ZHANG W L, et al. Confining pressure and pore pressure effect on the energy dissipation of water-saturated sandstone [J]. Journal of Basic Science and Engineering, 2019(1): 180–193.
|
[3] |
HAWKINS A B, MCCONNELL B J. Sensitivity of sandstone strength and deformability to changes in moisture content [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1992, 25(2): 115–130. doi: 10.1144/GSL.QJEG.1992.025.02.05
|
[4] |
DYKE C G, DOBEREINER L. Evaluating the strength and deformability of sandstones [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1991, 24(1): 123. doi: 10.1144/GSL.QJEG.1991.024.01.13
|
[5] |
高峰, 熊信, 周科平, 等. 冻融循环作用下饱水砂岩的强度劣化模型 [J]. 岩土力学, 2019, 40(3): 926–932.
GAO F, XIONG X, ZHOU K P, et al. Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926–932.
|
[6] |
ZHANG Z, GAO F. Experimental investigation on the energy evolution of dry and water-saturated red sandstones [J]. International Journal of Mining Science and Technology, 2015, 25(3): 383–388. doi: 10.1016/j.ijmst.2015.03.009
|
[7] |
WU J, FENG M, YU B, et al. Experimental investigation on dilatancy behavior of water-saturated sandstone [J]. International Journal of Mining Science and Technology, 2018, 28(2): 323–329. doi: 10.1016/j.ijmst.2017.09.003
|
[8] |
王斌, 李夕兵. 单轴荷载下饱水岩石静态和动态抗压强度的细观力学分析 [J]. 爆炸与冲击, 2012, 32(4): 423–431. doi: 10.3969/j.issn.1001-1455.2012.04.013
WANG B, LI X B. Mesomechanics analysis of static compressive strength and dynamic compressive strength of water-saturated rock under uniaxial load [J]. Explosion and Shock Waves, 2012, 32(4): 423–431. doi: 10.3969/j.issn.1001-1455.2012.04.013
|
[9] |
王斌, 李夕兵, 尹土兵, 等. 饱水砂岩动态强度的SHPB试验研究 [J]. 岩石力学与工程学报, 2010, 29(5): 1003–1009.
WANG B, LI X B, YIN T B, et al. Split Hopkinson pressure bar (SHPB) experiments on dynamic strength of water-saturated sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 1003–1009.
|
[10] |
ZHOU Z L, CAI X, ZHAO Y, et al. Strength characteristics of dry and saturated rock at different strain rates [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1919–1925. doi: 10.1016/S1003-6326(16)64314-5
|
[11] |
SELYUTINA N S, PETROV Y V. The water-saturation effect for concretes and rocks subjected to high strain rates [J]. Procedia Structural Integrity, 2018, 13: 705–709. doi: 10.1016/j.prostr.2018.12.117
|
[12] |
褚夫蛟, 刘敦文, 陶明, 等. 基于SHPB的不同含水状态砂岩动态响应 [J]. 工程科学学报, 2017, 39(12): 1783–1790.
CHU F J, LIU D W, TAO M, et al. Dynamic response of sandstones with different water contents based on SHPB [J]. Chinese Journal of Engineering, 2017, 39(12): 1783–1790.
|
[13] |
高富强, 张军, 何朋立. 不同围压荷载和含水状态下砂岩SHPB试验研究 [J]. 矿业研究与开发, 2018, 38(6): 65–68.
GAO F Q, ZHANG J, HE P L. SHPB test of sandstone with different confining loads and moisture contents [J]. Mining Research and Development, 2018, 38(6): 65–68.
|
[14] |
郑广辉, 许金余, 王鹏, 等. 不同饱水度红砂岩静态本构关系及动态力学性能研究 [J]. 振动与冲击, 2018, 37(16): 31–37.
ZHENG G H, XU J Y, WANG P, et al. Static constitutive relation and dynamic mechanical properties of red sandstone with different water saturation [J]. Journal of Vibration and Shock, 2018, 37(16): 31–37.
|
[15] |
WENG L, WU Z, LIU Q, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures [J]. Engineering Fracture Mechanics, 2019, 220: 106659. doi: 10.1016/j.engfracmech.2019.106659
|
[16] |
KIM E, STINE M A, DE OLIVEIRA D B M, et al. Correlations between the physical and mechanical properties of sandstones with changes of water content and loading rates [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 255–262. doi: 10.1016/j.ijrmms.2017.11.005
|
[17] |
ZHOU Z, CAI X, MA D, et al. Water saturation effects on dynamic fracture behavior of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 46–61. doi: 10.1016/j.ijrmms.2018.12.014
|
[18] |
王茹, 唐春安, 王述红. 岩石点荷载试验若干问题的研究 [J]. 东北大学学报(自然科学版), 2008(1): 130–132, 140.
WANG R, TANG C A, WANG S H. Study on several problems about point load test of rock [J]. Journal of Northeastern University (Natural Science), 2008(1): 130–132, 140.
|
[19] |
中国水电顾问集团成都勘测设计研究院. 工程岩体试验方法标准: GB/T 50266—2013 [S]. 北京: 中国计划出版社, 2013.
|
[20] |
王海龙, 李庆斌. 饱和混凝土静动力抗压强度变化的细观力学机理 [J]. 水利学报, 2006, 37(8): 958–962. doi: 10.3321/j.issn:0559-9350.2006.08.010
WANG H L, LI Q B. Micro-mechanism of static and dynamic strengths for saturated concrete [J]. Journal of Hydraulic Engineering, 2006, 37(8): 958–962. doi: 10.3321/j.issn:0559-9350.2006.08.010
|
[21] |
ZHENG D, LI Q. An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity [J]. Engineering Fracture Mechanics, 2004, 71(16/17): 2319–2327.
|
[1] | LIU Yushi, ZHANG Long, LI Wenguang, LIU Qijun, LIU Zhengtang, LIU Fusheng. First-Principles Investigation of the High-Pressure Phase Transition in Representative Alkali Metal Halides[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 022201. doi: 10.11858/gywlxb.20240864 |
[2] | WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the Dynamics in Face-Centered Cubic CeH9 and CeH10 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020109. doi: 10.11858/gywlxb.20230771 |
[3] | ZENG Yangyang, ZHU Gangbei, WANG Wentao, BAI Sha, ZHENG Zhaoyang, YU Guoyang, YANG Yanqiang. Mid- and Far-Infrared Spectroscopic and First-Principles Computational Study of the Structural Evolution of Hydrazine Nitrate under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030110. doi: 10.11858/gywlxb.20230804 |
[4] | CHEN Weishan, TAN Yi, TAN Dayong, XIAO Wansheng. First-Principles Theoretical Study on the Structure Behaviors of NaPO3 under Compression[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755 |
[5] | MA Hao, CHEN Ling, JIANG Qiwen, AN Decheng, DUAN Defang. Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791 |
[6] | WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776 |
[7] | GONG Lei, WANG Jingshu, ZHANG Junkai, CHEN Guangbo, ZHANG Han, WU Xiaoxin, HU Tingjing, CUI Hang. Size-Dependent Structural Phase Transition Behaviors of CaF2 Nanocrystals[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 021102. doi: 10.11858/gywlxb.20210842 |
[8] | LI Zuo, LIU Yun, LIAO Dalin, CHENG Lihong. First-Principles Study on Structural, Electronic and Optical Properties of G2ZT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514 |
[9] | WEN Xinzhu, PENG Yuyan, LIU Mingzhen. First-Principles Study on Structural Stability of Perovskite ZrBeO3[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011202. doi: 10.11858/gywlxb.20190802 |
[10] | YANG Longxing, LIU Lei, LIU Hong, YI Li, GU Xiaoyu. Structure and Elasticity of Garnet under High Pressure by First-Principles Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060104. doi: 10.11858/gywlxb.20190785 |
[11] | LI Xin, MA Xuejiao, GAO Wenquan, LIU Yanhui. Evolution of Crystal Structures and Electronic Properties for Ir2P under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011103. doi: 10.11858/gywlxb.20180645 |
[12] | LIU Siyuan, MIAO Yu, MA Xuejiao, LI Xin, GAO Wenquan, CHENG Yuheng, LIU Yanhui. Pressure-Induced Phase Transformations of IrSb from First-Principles Calculations[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052203. doi: 10.11858/gywlxb.20190716 |
[13] | LIU Yu-Xiao, WU Li-Sha, QI Yun, YAO Yong. First-Principles Study on Phase Transition and Phonon Spectrum of Solid ZnSe under High Pressure[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 97-102. doi: 10.11858/gywlxb.2017.02.001 |
[14] | HAN Lin, MA Mai-Ning, XU Zhi-Shuang, ZHOU Xiao-Ya. Structural Properties and Phase Transition of Pyroxene Polymorphs from First-Principles[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 125-134. doi: 10.11858/gywlxb.2017.02.004 |
[15] | TAN Xin, JIA Yi-Chao, LIU Xue-Jie. First-Principles Investigations on Phase Transition of ZrN under External Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 168-174. doi: 10.11858/gywlxb.2014.02.006 |
[16] | WU Qi, PENG Fang, LI Qing-Hua, LEI Li, LI Rong-Qi. Pressure-Iduced Phase Transition of LiAl5O8[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 338-342. doi: 10.11858/gywlxb.2012.03.015 |
[17] | DING Ying-Chun, LIU Hai-Jun, JIANG Meng-Heng, CHEN Min, CHEN Yong-Ming. First-Principles Investigations on Structural Transformation and Electronic Properties of BeP2N4 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 674-680. doi: 10.11858/gywlxb.2012.06.012 |
[18] | YANG Xiao-Cui, ZHAO Yu-Wei, GAO Zhong-Ming, LIU Xin, ZHANG Li-Xin, WANG Xiao-Ming, HAO Ai-Min. First-Principles Study of Structural Stabilities, Electronic and Optical Properties of CaF2 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 225-230 . doi: 10.11858/gywlxb.2010.03.011 |
[19] | HAO Jun-Hua, WU Zhi-Qiang, WANG Zheng, JIN Qing-Hua, LI Bao-Hui, DING Da-Tong. First Principles Calculation of SiO2 at High Pressures[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 260-266 . doi: 10.11858/gywlxb.2010.04.004 |
[20] | ZHANG Cheng-Xiang, WU Shao-Zeng, WU Shu-Yan, WU Xue-Yuan. Calculations of the High Pressure Phase Transition Point of NaCl, KCl and NaF Crystals[J]. Chinese Journal of High Pressure Physics, 1993, 7(3): 232-237 . doi: 10.11858/gywlxb.1993.03.011 |