Citation: | YANG Shuqi, ZHANG Xu, PENG Wenyang, SHU Junxiang, QIN Shuang, ZHONG Bin. Impact Initiation Characteristics of TATB Based Insensitive Explosives Mixed with HMX by Electromagnetic Velocity Gauges[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033403. doi: 10.11858/gywlxb.20190852 |
[1] |
张琪敏, 张旭, 赵康, 等. TATB基钝感炸药JB-9014的冲击起爆反应增长规律 [J]. 爆炸与冲击, 2019, 39(4): 041405.
ZHANG Q M, ZHANG X, ZHAO K, et al. Law of reaction growth of shock initiation on the TATB based insensitive explosive JB-9014 [J]. Explosion and Shock Waves, 2019, 39(4): 041405.
|
[2] |
HILL L G, GUSTAVSEN R L, ALCON R R, et al. Shock initiation of new and aged PBX 9501 measured with embedded electromagnetic particle velocity gauges: LA-13634-MS [R]. New Mexico, US: Los Alamos National Laboratory, 1999.
|
[3] |
ZHANG X, WANG Y F, HUANG W B, et al. Reaction buildup of PBX explosives JOB-9003 under different initiation pressures [J]. Journal of Energetic Materials, 2017, 35(2): 197–212. doi: 10.1080/07370652.2016.1250841
|
[4] |
GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene explosive PBX9502 cooled to -55 ℃ [J]. Journal of Applied Physics, 2012, 112(7): 074909. doi: 10.1063/1.4757599
|
[5] |
张涛, 赵继波, 伍星, 等. 未反应JBO-9021炸药冲击雨贡纽曲线的研究 [J]. 高压物理学报, 2016, 30(6): 457–462. doi: 10.11858/gywlxb.2016.06.004
ZHANG T, ZHAO J B, WU X, et al. Hugoniot curve of unreacted JBO-9021 explosive [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 457–462. doi: 10.11858/gywlxb.2016.06.004
|
[6] |
GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Measurements of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX 9502: wave forms from embedded gauges and comparison of four different material lots [J]. Journal of Applied Physics, 2006, 99(11): 114907. doi: 10.1063/1.2195191
|
[7] |
张涛, 谷岩, 赵继波, 等. JBO-9021炸药的化学反应区宽度 [J]. 爆炸与冲击, 2017, 37(3): 415–421. doi: 10.11883/1001-1455(2017)03-0415-07
ZHANG T, GU Y, ZHAO J B, et al. Chemical reaction zone length of JBO-9021 [J]. Explosion and Shock Waves, 2017, 37(3): 415–421. doi: 10.11883/1001-1455(2017)03-0415-07
|
[8] |
SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives [J]. The Journal of Chemical Physics, 1984, 80(8): 3831–3844. doi: 10.1063/1.447164
|
[9] |
裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485–490.
PEI H B, HUANG W B, QIN J C, et al. Reaction zone structure of JB-9014 explosive measured by PDV [J]. Explosion and Shock Waves, 2018, 38(3): 485–490.
|
[10] |
赵同虎, 张新彦, 李斌, 等. 用光电法研究钝感炸药JB-9014反应区结构 [J]. 高压物理学报, 2002, 16(2): 111–119. doi: 10.3969/j.issn.1000-5773.2002.02.005
ZHAO T H, ZHANG X Y, LI B, et al. Detonation reaction zones tructure of JB-9014 [J]. Chinese Journal of High Pressure Physics, 2002, 16(2): 111–119. doi: 10.3969/j.issn.1000-5773.2002.02.005
|
[11] |
LOBOIKO B G, LUBYATINSKY S N. Reaction zones of detonating solid explosives [J]. Combustion, Explosion, and Shock Waves, 2000, 36(6): 716–733. doi: 10.1023/A:1002898505288
|
[1] | LI Qingwen, PAN Chuangchuang, ZHANG Xuelei, ZHONG Yuqi, LI Ling, NIE Fanfan, LI Wenxia, XU Mengjiao. Effect of CFRP Layers on the Energy Evolution of Axial Compressed Cylindrical Coal Based on Particle Flow Software[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 045302. doi: 10.11858/gywlxb.20240931 |
[2] | CHEN Zhengyan, WU Hongbo, CAI Xinyuan, MA Chengshuai, XIE Shoudong. Effect of Aensitization Methods on Detonation Performance of Emulsion Explosive in Simulated Plateau Environment[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045202. doi: 10.11858/gywlxb.20230838 |
[3] | GUAN Gongshun, DAI Xunyang, ZHANG Duo. High Velocity Impact Shielding Performance of Basalt Fiber Cloth/Al-Plate Composite Shields[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014102. doi: 10.11858/gywlxb.20210806 |
[4] | MAN Lianjie, YUAN Hongsheng, QIN Liping, ZHANG Li. Effects of Carbon on (Mg,Fe)SiO3 Bridgmanite under the Lower Mantle Pressure-Temperature Conditions[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060102. doi: 10.11858/gywlxb.20190788 |
[5] | LIU Yonggui, SHEN Lingyan. Effect of the Fixed Temperature Interface on the Propagation of the Phase Transition Wave[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 042301. doi: 10.11858/gywlxb.20170559 |
[6] | ZHENG Kang, CHEN Li, FANG Qin, GAO Fei. Tensile Properties of CFRP/Epoxy Gel Composite Strip[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 794-802. doi: 10.11858/gywlxb.2017.06.015 |
[7] | NI Xiao-Jun, MA Hong-Hao, SHEN Zhao-Wu, JIANG Yao-Gang, LI Lei. Experimental Measurement and Numerical Simulation of Incident Shock Wave Pressure on the Fluid-Solid Interface[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 528-534. doi: 10.11858/gywlxb.2013.04.010 |
[8] | ZHANG Bao-Xi, HA Yue, DENG Yun-Fei, PANG Bao-Jun. Optimal Structural Design of Stuffed Shields with Kevlar Fiber Clothes against Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 105-112. doi: 10.11858/gywlxb.2013.01.015 |
[9] | REN Hui-Lan, NING Jian-Guo, XU Xiang-Zhao. The 3-D Numerical Simulation for Different Explosive Charges in the Fortifications[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 216-222. doi: 10.11858/gywlxb.2013.02.008 |
[10] | HA Yue, LIU Zhi-Yong, GUAN Gong-Shun, PANG Bao-Jun. Damage Investigation of Hypervelocity Impact on Woven Fabric of Basalt Fiber[J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 557-563. doi: 10.11858/gywlxb.2012.05.012 |
[11] | HA Yue, GUAN Gong-Shun, CHI Run-Qiang, PANG Bao-Jun. Investigation of Residual Velocity of Aluminum Projectiles at Hypervelocity Impact on Woven of Basalt Fiber[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 273-280. doi: 10.11858/gywlxb.2012.03.005 |
[12] | LI Jin-He, ZHAO Ji-Bo, TAN Duo-Wang, WANG Yan-Ping, ZHANG Yuan-Ping. Effect on the Near Field Shock Wave Pressure of Underwater Explosion of Aluminized Explosive at Different Initiation Modes[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 289-293. doi: 10.11858/gywlxb.2012.03.007 |
[13] | LI Xiao-Jie, MO Fei, YAN Hong-Hao, ZHANG Cheng-Jiao. Numerical Simulation of the Oblique Collision in Explosive Welding[J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 173-176 . doi: 10.11858/gywlxb.2011.02.014 |
[14] | XU Sen, LIU Da-Bin, PENG Jin-Hua, WANG Jian-Ling, GUO Wei, JIN Peng-Gang, JIA Xian-Zheng. Study on the Shock Wave Attenuation of the Booster Charge in the PMMA Gap[J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 431-437 . doi: 10.11858/gywlxb.2010.06.005 |
[15] | HU Jin-Biao, LIU Ji-Ping, TAN Hua, YANG Jia-Ling, TANG Zhi-Ping. Study of Thermal Relaxation at CHBr3/NaCl Interface under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 134-140 . doi: 10.11858/gywlxb.2001.02.010 |
[16] | TAN Hua. Shock Temperature Measurement for Metals-Influences of a Gap Interface between the Driver Plate and the Metal Film Sample on the Shock Temperature Measurement by Using Radiometry[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 161-168 . doi: 10.11858/gywlxb.1999.03.001 |
[17] | ZHAO Tong-Hu, HAN Li-Shi, HE Zhi. The Rectangular Diffraction of Detonation Wave in the High Explosive RHT-901 and the Insensitive High Explosive IHE-2[J]. Chinese Journal of High Pressure Physics, 1998, 12(4): 264-270 . doi: 10.11858/gywlxb.1998.04.005 |
[18] | TAN Hua. Shock Temperature Measurements for Metals-Release Approximation at the Interface[J]. Chinese Journal of High Pressure Physics, 1996, 10(3): 161-169 . doi: 10.11858/gywlxb.1996.03.001 |
[19] | TAN Hua. Shock Temperature Measurements for Metal (Ⅰ)-Calibration of Pyrometers and Data Reduction for the Temperature at the Interface[J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 254-263 . doi: 10.11858/gywlxb.1994.04.003 |
[20] | TAN Hua, HAN Jun-Wan, WANG Xiao-Jiang, SU Lin-Xiang, LIU Li, LIU Jiang, CUI Ling. Explosive Shock Synthesis of Wurtzite Type Boron Nitride[J]. Chinese Journal of High Pressure Physics, 1991, 5(4): 241-253 . doi: 10.11858/gywlxb.1991.04.001 |