Volume 33 Issue 6
Nov 2019
Turn off MathJax
Article Contents
SONG Haipeng, LIU Yungui, LI Xiang, JIN Shuyu, WANG Xinyu, WU Xiang. High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060105. doi: 10.11858/gywlxb.20190847
Citation: SONG Haipeng, LIU Yungui, LI Xiang, JIN Shuyu, WANG Xinyu, WU Xiang. High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060105. doi: 10.11858/gywlxb.20190847

High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)

doi: 10.11858/gywlxb.20190847
  • Received Date: 16 Oct 2019
  • Rev Recd Date: 04 Nov 2019
  • Understanding the physical properties under high pressure of hydroxylbastnäsite-(Ce), an important hydrous rare earth element (REE) fluorocarbonate mineral, can provide key information to explore the effect of fluorine and hydroxyl on high-pressure behavior of carbonate minerals. Here Raman spectroscopy combined with diamond anvil cell (DAC) technology was employed to investigate the high-pressure properties of hydroxylbastnäsite-(Ce). At ambient conditions, the in-plane vibration bands of [CO3]2– are observed at 604 cm–1 and 742 cm–1, the symmetrical stretching bands are at 1 083, 1 096, and 1 103 cm–1, and the asymmetric stretching vibration is at 1 430 cm–1. Six vibration peaks of [OH] are at 3 174, 3 197, 3 290, 3 345, 3 526 and 3 648 cm–1, respectively. The observation of three discrete [CO3]2– symmetrical stretching bands, instead of one, indicates that there may be at least three structurally-nonequivalent [CO3]2– groups in the hydroxyl-bästnasite-(Ce) structure. On compression, all of the Raman peaks show a continuous shift to the higher frequency and no new peaks appear, suggesting that no phase transition occurs up to 30 GPa at room temperature. The slope of the in-plane bending vibration of [CO3]2– is the smallest, about 2(0.06) cm–1/GPa. Compared with the anhydrous carbonate, it can be inferred that the [OH] and F in the structures of hydroxylbastnäsite-(Ce) lead to the compression anisotropy. Our results provide new clues for studying the high-pressure physical behavior of carbonates in the deep earth.

     

  • loading
  • [1]
    MERLINI M, HANFLAND M, CRICHTON W A. CaCO3-Ⅲ and CaCO3-Ⅵ, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle [J]. Earth and Planetary Science Letters, 2012, 333/334: 265–271. doi: 10.1016/j.jpgl.2012.04.036
    [2]
    SUITO K, NAMBA J, HORIKAWA T. Phase relations of CaCO3 at high pressure and high temperature [J]. American Mineralogist, 2001, 86(9): 997–1002. doi: 10.2138/am-2001-8-906
    [3]
    MERRILL L, BASSETT W A. The crystal structure of CaCO3(Ⅱ), a high-pressure metastable phase of calcium carbonate [J]. Acta Crystallographica Section B, 1975, 31(2): 343–349. doi: 10.1107/S0567740875002774
    [4]
    ANTAO S M, MULDER W H, HASSAN I, et al. Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite+magnesite dolomite reaction boundary [J]. American Mineralogist, 2004, 89: 1142–1147. doi: 10.2138/am-2004-0728
    [5]
    PEARSON D G, BRENKER F E, NESTOLA F, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond [J]. Nature, 2014, 507(7491): 221–224. doi: 10.1038/nature13080
    [6]
    TOBIAS G, STEPHAN K, ARON R, et al. The effect of fluorine on the stability of wadsleyite: implications for the nature and depths of the transition zone in the Earth’s mantle [J]. Earth and Planetary Science Letters, 2018, 482: 236–244. doi: 10.1016/j.jpgl.2017.11.011
    [7]
    刘云贵, 吕政星, 宋海鹏, 等. 金刚石荧光机制的研究及其对高压拉曼光谱测试的意义 [J]. 高压物理学报, 2019, 33(4): 043101.

    LIU Y G, LÜ Z X, SONG H P, et al. Fluorescence mechanism of diamond and the significance in high-pressure raman spectrometry [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043101.
    [8]
    韩茜, 吴也, 黄海军. BiFeO3高压拉曼光谱研究 [J]. 高压物理学报, 2018, 32(5): 051202.

    HAN X, WU Y, HUANG H J. High pressure raman investigation of BiFeO3 [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051202.
    [9]
    YANG H, SANO J L, EICHLER C, et al. Iranite, CuPb10(CrO4)6(SiO4)2(OH)2, isomorphous with hemihedrite [J]. Acta Crystallographica, 2007, C63: i122–i124.
    [10]
    YANG H, ZWICK J, DOWNS R T, et al. Isokite, CaMg(PO4)F, isostructural with titanite [J]. Acta Crystallographica, 2007, 63(12): i89–i90.
    [11]
    LIU D, PANG Y W, YE Y, et al. In-situ high-temperature vibrational spectra for synthetic and natural clinohumite: implications for dense hydrous magnesium silicates in subduction zones [J]. American Mineralogist, 2019, 104: 53–63. doi: 10.2138/am-2019-6604
    [12]
    YANG H, ROBERT F D, PAMELA G, et al. Crystal structure and Raman spectrum of hydroxyl-bästnasite-(Ce), CeCO3(OH) [J]. American Mineralogist, 2008, 93: 698–701. doi: 10.2138/am.2008.2827
    [13]
    洪文兴, 何松裕, 黄舜华, 等. 稀土氟碳酸盐矿物的拉曼光谱研究 [J]. 光谱学与光谱分析, 1999, 19(4): 546–549. doi: 10.3321/j.issn:1000-0593.1999.04.010

    HONG W X, HE S Y, HUANG S H, et al. A Raman spectral studies of rare-earth (REE) fluoro-carbonate minerals [J]. Spectroscopy and Spectral Analysis, 1999, 19(4): 546–549. doi: 10.3321/j.issn:1000-0593.1999.04.010
    [14]
    KIYONORI M, RITSURO M, TETSUO M, et al. Crystal structure of hydroxylbastnäsite-(Ce) from Kamihouri, Miyazaki Prefecture, Japan [J]. Journal of Mineralogical and Petrological Sciences, 2013, 108(6): 326–334. doi: 10.2465/jmps.121129
    [15]
    XU J G, KUANG Y Q, ZHANG B, et al. High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy [J]. Physics and Chemistry of Minerals, 2015, 42(10): 805–816. doi: 10.1007/s00269-015-0764-7
    [16]
    PHILIPPE G, CLAUDINE B, BRUNO R, et al. Raman spectroscopic studies of carbonates. Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite [J]. Physics and Chemistry of Minerals, 1993, 20(1): 1–18.
    [17]
    MINCH R, SEOUNG D H, EHM L, et al. High-pressure behavior of otavite (CdCO3) [J]. Journal of Alloys and Compounds, 2010, 508(2): 251–257. doi: 10.1016/j.jallcom.2010.08.090
    [18]
    何运鸿, 田雨, 赵慧芳, 等. 高氯酸钠高压相变的拉曼光谱证据 [J]. 高压物理学报, 2018, 32(4): 041201.

    HE Y H, TIAN Y, ZHAO H F, et al. Raman evidences for phase transition of sodium perchlorate at high pressure [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 041201.
    [19]
    田雨, 刘雪廷, 何运鸿, 等. NaCl-O2体系高温高压化学反应的拉曼光谱证据 [J]. 高压物理学报, 2017, 31(6): 692–697. doi: 10.11858/gywlxb.2017.06.003

    TIAN Y, LIU X T, HE Y H, et al. Raman evidences of chemical reaction of NaCl-O2 system at high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 692–697. doi: 10.11858/gywlxb.2017.06.003
    [20]
    刘曦, 代立东, 邓力维, 等. 近十年我国在地球内部物质高压物性实验研究方面的主要进展 [J]. 高压物理学报, 2017, 31(6): 657–681. doi: 10.11858/gywlxb.2017.06.001

    LIU X, DAI L D, DENG L W, et al. Recent progresses in some fields of high-pressure physics relevant to Earth sciences achieved by Chinese scientists [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 657–681. doi: 10.11858/gywlxb.2017.06.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(10019) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return