Citation: | SONG Haipeng, LIU Yungui, LI Xiang, JIN Shuyu, WANG Xinyu, WU Xiang. High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060105. doi: 10.11858/gywlxb.20190847 |
[1] |
MERLINI M, HANFLAND M, CRICHTON W A. CaCO3-Ⅲ and CaCO3-Ⅵ, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle [J]. Earth and Planetary Science Letters, 2012, 333/334: 265–271. doi: 10.1016/j.jpgl.2012.04.036
|
[2] |
SUITO K, NAMBA J, HORIKAWA T. Phase relations of CaCO3 at high pressure and high temperature [J]. American Mineralogist, 2001, 86(9): 997–1002. doi: 10.2138/am-2001-8-906
|
[3] |
MERRILL L, BASSETT W A. The crystal structure of CaCO3(Ⅱ), a high-pressure metastable phase of calcium carbonate [J]. Acta Crystallographica Section B, 1975, 31(2): 343–349. doi: 10.1107/S0567740875002774
|
[4] |
ANTAO S M, MULDER W H, HASSAN I, et al. Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite+magnesite dolomite reaction boundary [J]. American Mineralogist, 2004, 89: 1142–1147. doi: 10.2138/am-2004-0728
|
[5] |
PEARSON D G, BRENKER F E, NESTOLA F, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond [J]. Nature, 2014, 507(7491): 221–224. doi: 10.1038/nature13080
|
[6] |
TOBIAS G, STEPHAN K, ARON R, et al. The effect of fluorine on the stability of wadsleyite: implications for the nature and depths of the transition zone in the Earth’s mantle [J]. Earth and Planetary Science Letters, 2018, 482: 236–244. doi: 10.1016/j.jpgl.2017.11.011
|
[7] |
刘云贵, 吕政星, 宋海鹏, 等. 金刚石荧光机制的研究及其对高压拉曼光谱测试的意义 [J]. 高压物理学报, 2019, 33(4): 043101.
LIU Y G, LÜ Z X, SONG H P, et al. Fluorescence mechanism of diamond and the significance in high-pressure raman spectrometry [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043101.
|
[8] |
韩茜, 吴也, 黄海军. BiFeO3高压拉曼光谱研究 [J]. 高压物理学报, 2018, 32(5): 051202.
HAN X, WU Y, HUANG H J. High pressure raman investigation of BiFeO3 [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051202.
|
[9] |
YANG H, SANO J L, EICHLER C, et al. Iranite, CuPb10(CrO4)6(SiO4)2(OH)2, isomorphous with hemihedrite [J]. Acta Crystallographica, 2007, C63: i122–i124.
|
[10] |
YANG H, ZWICK J, DOWNS R T, et al. Isokite, CaMg(PO4)F, isostructural with titanite [J]. Acta Crystallographica, 2007, 63(12): i89–i90.
|
[11] |
LIU D, PANG Y W, YE Y, et al. In-situ high-temperature vibrational spectra for synthetic and natural clinohumite: implications for dense hydrous magnesium silicates in subduction zones [J]. American Mineralogist, 2019, 104: 53–63. doi: 10.2138/am-2019-6604
|
[12] |
YANG H, ROBERT F D, PAMELA G, et al. Crystal structure and Raman spectrum of hydroxyl-bästnasite-(Ce), CeCO3(OH) [J]. American Mineralogist, 2008, 93: 698–701. doi: 10.2138/am.2008.2827
|
[13] |
洪文兴, 何松裕, 黄舜华, 等. 稀土氟碳酸盐矿物的拉曼光谱研究 [J]. 光谱学与光谱分析, 1999, 19(4): 546–549. doi: 10.3321/j.issn:1000-0593.1999.04.010
HONG W X, HE S Y, HUANG S H, et al. A Raman spectral studies of rare-earth (REE) fluoro-carbonate minerals [J]. Spectroscopy and Spectral Analysis, 1999, 19(4): 546–549. doi: 10.3321/j.issn:1000-0593.1999.04.010
|
[14] |
KIYONORI M, RITSURO M, TETSUO M, et al. Crystal structure of hydroxylbastnäsite-(Ce) from Kamihouri, Miyazaki Prefecture, Japan [J]. Journal of Mineralogical and Petrological Sciences, 2013, 108(6): 326–334. doi: 10.2465/jmps.121129
|
[15] |
XU J G, KUANG Y Q, ZHANG B, et al. High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy [J]. Physics and Chemistry of Minerals, 2015, 42(10): 805–816. doi: 10.1007/s00269-015-0764-7
|
[16] |
PHILIPPE G, CLAUDINE B, BRUNO R, et al. Raman spectroscopic studies of carbonates. Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite [J]. Physics and Chemistry of Minerals, 1993, 20(1): 1–18.
|
[17] |
MINCH R, SEOUNG D H, EHM L, et al. High-pressure behavior of otavite (CdCO3) [J]. Journal of Alloys and Compounds, 2010, 508(2): 251–257. doi: 10.1016/j.jallcom.2010.08.090
|
[18] |
何运鸿, 田雨, 赵慧芳, 等. 高氯酸钠高压相变的拉曼光谱证据 [J]. 高压物理学报, 2018, 32(4): 041201.
HE Y H, TIAN Y, ZHAO H F, et al. Raman evidences for phase transition of sodium perchlorate at high pressure [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 041201.
|
[19] |
田雨, 刘雪廷, 何运鸿, 等. NaCl-O2体系高温高压化学反应的拉曼光谱证据 [J]. 高压物理学报, 2017, 31(6): 692–697. doi: 10.11858/gywlxb.2017.06.003
TIAN Y, LIU X T, HE Y H, et al. Raman evidences of chemical reaction of NaCl-O2 system at high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 692–697. doi: 10.11858/gywlxb.2017.06.003
|
[20] |
刘曦, 代立东, 邓力维, 等. 近十年我国在地球内部物质高压物性实验研究方面的主要进展 [J]. 高压物理学报, 2017, 31(6): 657–681. doi: 10.11858/gywlxb.2017.06.001
LIU X, DAI L D, DENG L W, et al. Recent progresses in some fields of high-pressure physics relevant to Earth sciences achieved by Chinese scientists [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 657–681. doi: 10.11858/gywlxb.2017.06.001
|
[1] | WANG Tao, MENG Fan, YI Weizhai, TIAN Xiaoyue, LI Ruikang, SU Bin, LIU Litao, LUO Zhenmin. Coupling Inhibition Effects of Dry Water Modified by Potassium Carbonate and Hexafluoropropane on Methane Explosion[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 045301. doi: 10.11858/gywlxb.20240927 |
[2] | JIAO Yifei, XIONG Xiaoman, REN Hao, MI Hongfu, HE Guoqin, LI Pin, WEI Xin. Effect of Various Material Obstacles on the Promoting Explosion of Methane-Hydrogen Premixed Gas[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682 |
[3] | FANG Zhiqiang, LYU Ping, ZHANG Rui, HUANG Weibo, SUN Pengfei, SANG Yingjie. Blast-Resistant Properties and Mechanism of Anti-Explosion Polyurea Coating[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024102. doi: 10.11858/gywlxb.20210840 |
[4] | XIA Yu, CHENG Yangfan, HU Fangfang, WANG Rui, ZHU Shoujun, SHEN Zhaowu. Inhibition Characteristics of Typical Solid Explosion Suppressors on Acetylene-Air Explosion[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065201. doi: 10.11858/gywlxb.20220580 |
[5] | DUAN Yulong, LI Yuanbing, YANG Yanling, LONG Fengying, YU Shuwei, HUANG Jun, BU Yunbing. Influence of Water Mist and Sliding Device on Explosion Characteristics of Premixed Methane/Air[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055202. doi: 10.11858/gywlxb.20210718 |
[6] | HE Yunlong, ZHANG Yuduo, YUAN Bihe, CHEN Xianfeng, CHEN Wentao, YANG Manjiang, WANG Xin, CHEN Gongqing. Fire and Explosion Suppression Performance of Luffa Sponge in Premixed Methane/Air Gas[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065202. doi: 10.11858/gywlxb.20210778 |
[7] | LI Yuyan, JIANG Rongpei, LI Zhipeng, XU Sen, PAN Feng, XIE Lifeng. Detonation and Quenching Characteristics of Premixed C2H4/N2O[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045201. doi: 10.11858/gywlxb.20190845 |
[8] | MAO Haoqing, HUANG Weichao, LI Bin, XIE Lifeng. Explosion Characteristics of RP-3 Aviation Kerosene Ignited by a High Explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 025201. doi: 10.11858/gywlxb.20170583 |
[9] | REN Shao-Yun. Mixing and Explosion Process of Propane-Air at Lower Flammable Limit in Confined Vessel[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 629-636. doi: 10.11858/gywlxb.2017.05.017 |
[10] | YANG Chun-Li, LIU Yan, HU Bin, LI Xiang-Chun, DONG Yan. Effect of Nitrogen and Water Vapor on Methane-Air Mixture ExplosionElementary Reaction and Suppression Mechanism[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 301-308. doi: 10.11858/gywlxb.2017.03.012 |
[11] | ZHOU Ning, GENG Ying, FENG Lei, LIU Chao, ZHANG Bing-Bing. Experimental Study on the Strain Law of the Thin-Walled Pipe in the Gas Explosion Process with Different Ignition Energies[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 200-206. doi: 10.11858/gywlxb.2016.03.004 |
[12] | YANG Fan, ZHONG Jie, LIU Xing-Hua, HE Wei. Minimum Ignition Energy and Coupling Coefficient of Methane-Air Mixture and Its Application[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 392-400. doi: 10.11858/gywlxb.2015.05.010 |
[13] | TAN Ru-Mei, ZHANG Qi. Research on the Explosibility of Gaseous Epoxypropane-Aluminum Dust-Air Hybrid Mixtures[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 48-54. doi: 10.11858/gywlxb.2014.01.008 |
[14] | MA Qiu-Ju, ZHANG Qi, PANG Lei. Theoretical Model of Minimum Ignition Energy Prediction for Methane-Air Mixture[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 301-305. doi: 10.11858/gywlxb.2012.03.009 |
[15] | WANG Xiao-Yan, HUA Jing-Song, WEN Shang-Jie, JIN Shan, SUN Xue-Lin. Experimental Studies on Hugoniot Data of Methane-Air Mixtures under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 315-320 . doi: 10.11858/gywlxb.2009.04.013 |
[16] | LI Cheng-Bing, WU Guo-Dong, JING Fu-Qian. Two-Dimensional Numerical Simulation of Explosion for Premixed CH4-O2-N2 Mixture[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 367-376 . doi: 10.11858/gywlxb.2009.05.008 |
[17] | HU Dong, YE Song, WU Jing-He, YAN Zheng-Xin, LI Ping, SUN Zhu-Mei. The Spectro-Studies on Micro-Mechanism of Shock Ignition for Aluminium[J]. Chinese Journal of High Pressure Physics, 2006, 20(3): 237-242 . doi: 10.11858/gywlxb.2006.03.003 |
[18] | WANG Ji, WANG Xiao-Jun, WANG Feng, ZHAO Kai. Numerical Simulations on Buckling Failure of Preloaded Cylindrical Shell Irradiated by High Power Laser Beam[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 151-158 . doi: 10.11858/gywlxb.2005.02.009 |
[19] | HU Dong, YUAN Chang-Ying, LI Ping, CHENG Xin-Lu, LIU Jin-Chao, SUN Zhu-Mei. Spectroscopic Studies of Epoxypropane Ignition[J]. Chinese Journal of High Pressure Physics, 2003, 17(3): 169-172 . doi: 10.11858/gywlxb.2003.03.002 |
[20] | HE Yu-Zhong, CUI Ji-Zing. Single Pulse Shock Tube Study on Decomposition and Incipient Detonation of the Trinitrotoluene[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 184-186 . doi: 10.11858/gywlxb.1999.03.005 |