Citation: | REN Yuduo, ZHANG Yang, LUO Kun. Properties of Commercial Pure Titanium under Self-Heating and High-Pressure Heating Treatment[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051302. doi: 10.11858/gywlxb.20190846 |
[1] |
孟宪伟, 赵锦秀, 程建雄, 等. TC4钛合金热处理工艺的研究现状及进展 [J]. 装备制造与教育, 2019, 33(3): 28–30, 42.
|
[2] |
LONG M, RACK H J. Titanium alloys in total joint replacement—a materials science perspective [J]. Biomaterials, 1998, 19(18): 1621–1639. doi: 10.1016/S0142-9612(97)00146-4
|
[3] |
WIELEWSKI E, SIVIOUR C R, PETRINIC N. On the correlation between macrozones and twinning in Ti-6Al-4V at very high strain rates [J]. Scripta Materialia, 2012, 67(3): 229–232. doi: 10.1016/j.scriptamat.2012.04.026
|
[4] |
SUN F, NOWAK S, GLORIANT T, et al. Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy [J]. Scripta Materialia, 2010, 63(11): 1053–1056. doi: 10.1016/j.scriptamat.2010.07.042
|
[5] |
LIU Z, WELSCH G. Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys [J]. Metallurgical Transactions A, 1988, 19(3): 527–542. doi: 10.1007/BF02649267
|
[6] |
KIM W J, YOO S J, LEE J B. Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature [J]. Scripta Materialia, 2010, 62(7): 451–454. doi: 10.1016/j.scriptamat.2009.12.008
|
[7] |
LIANG S X, YIN L X, CHE H W, et al. Effects of Al content on structure and mechanical properties of hot-rolled ZrTiAlV alloys [J]. Materials & Design, 2013, 52: 246–250.
|
[8] |
STOLYAROV V V, ZEIPPER L, MINGLER B, et al. Influence of post-deformation on CP-Ti processed by equal channel angular pressing [J]. Materials Science and Engineering A, 2008, 476(1/2): 98–105.
|
[9] |
STOLYAROV V V, ZHU Y T, LOWE T C, et al. Microstructure and properties of pure Ti processed by ECAP and cold extrusion [J]. Materials Science and Engineering A, 2001, 303(1/2): 82–89.
|
[10] |
WANG Y C, LANGDON T G. Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion [J]. Materials Science and Engineering A, 2013, 559: 861–867. doi: 10.1016/j.msea.2012.09.034
|
[11] |
BEEN J, GRAUMAN J S. Titanium and titanium alloys [C]//REVIE R W. Uhlig’s Corrosion Handbook. Hoboken, NJ: John Wiley & Sons Inc., 2011: 861–878.
|
[12] |
ZHAO S, PENG Q, LI H, et al. Effects of super-high pressure on microstructures, nano-mechanical behaviors and corrosion properties of Mg-Al alloys [J]. Journal of Alloys and Compounds, 2014, 584: 56–62. doi: 10.1016/j.jallcom.2013.09.026
|
[13] |
SIKKA S K, VOHRA Y K, CHIDAMBARAM R. Omega phase in materials [J]. Progress in Materials Science, 1982, 27(3/4): 245–310.
|
[14] |
WANG Z X, LI F Y, PAN M X, et al. Effects of high pressure on the nucleation of Cu60Zr20Hf10Ti10 bulk metallic glass [J]. Journal of Alloys and Compounds, 2005, 388(2): 262–265. doi: 10.1016/j.jallcom.2004.07.025
|
[15] |
SWIDERSKA-SRODA A, KALISZ G, PALOSZ B, et al. SiC nano-ceramics sintered under high-pressure [J]. Reviews on Advanced Materials Science, 2008, 18: 422–424.
|
[16] |
HUANG Q, YU D, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250. doi: 10.1038/nature13381
|
[17] |
ERRANDONEA D, MENG Y, SOMAYAZULU M, et al. Pressure-induced α→ω transition in titanium metal: a systematic study of the effects of uniaxial stress [J]. Physica B: Condensed Matter, 2005, 355(1/2/3/4): 116–125. doi: 10.1016/j.physb.2004.10.030
|
[18] |
WANG H, ZHU D, ZOU C, et al. Evolution of the microstructure and nanohardness of Ti-48 at.% Al alloy solidified under high pressure [J]. Materials & Design, 2012, 34: 488–493.
|
[19] |
JAYARAMAN A, KLEMENT JR W, KENNEDY G C. Solid-solid transitions in titanium and zirconium at high pressures [J]. Physical Review, 1963, 131(2): 644. doi: 10.1103/PhysRev.131.644
|
[20] |
BERRAHMOUNE M R, BERVEILLER S, INAL K, et al. Analysis of the martensitic transformation at various scales in TRIP steel [J]. Materials Science and Engineering A, 2004, 378(1/2): 304–307. doi: 10.1016/j.msea.2003.10.372
|
[21] |
HALEVY I, ZAMIR G, WINTERROSE M, et al. Crystallographic structure of Ti-6Al-4V, Ti-HP and Ti-CP under high-pressure [C]//Journal of Physics: Conference Series, 2010, 215(1): 12–13.
|
[22] |
TAYA M, LULAY K E, LLOYD D J. Strengthening of a particulate metal matrix composite by quenching [J]. Acta Metallurgica et Materialia, 1991, 39(1): 73–87. doi: 10.1016/0956-7151(91)90329-Y
|
[23] |
WANG N, WEI B. Rapid solidification behaviour of Ag-Cu-Ge ternary eutectic alloy [J]. Materials Science and Engineering A, 2001, 307(1/2): 80–90. doi: 10.1016/S0921-5093(00)01954-7
|
[24] |
GOODWIN P N, QUIMBY E H, MORGAN R I I. Physical foundations of radiology [J]. American Journal of Physical Medicine & Rehabilitation, 1971, 50(1): 47.
|
[25] |
EKIMOV E A, SUETIN N V, POPOVICH A F, et al. Thermal conductivity of diamond composites sintered under high pressures [J]. Diamond and Related Materials, 2008, 17(4/5): 838–843. doi: 10.1016/j.diamond.2007.12.051
|
[26] |
LIU Y. Lamellar spacing and mechanical property of undercooled Ti-45Al-2Cr-2Nb alloy [J]. Materials Letters, 2003, 57(15): 2262–2266. doi: 10.1016/S0167-577X(02)01207-7
|
[27] |
ZHANG X Z, KNOTT J F. Cleavage fracture in bainitic and martensitic microstructures [J]. Acta Materialia, 1999, 47(12): 3483–3495. doi: 10.1016/S1359-6454(99)00200-1
|
[28] |
GU Y, ZENG F, QI Y, et al. Tensile creep behavior of heat-treated TC11 titanium alloy at 450–550 ℃ [J]. Materials Science and Engineering A, 2013, 575: 74–85. doi: 10.1016/j.msea.2013.03.038
|
[29] |
RAJAN T V, SHARMA C P, SHARMA A. Heat treatment: principles and techniques [M]. 2nd ed. New Delhi, India: Prentice Hall India Learning Private Limited, 2010.
|