Citation: | MIAO Guanghong, MA Leiming, LI Xuejiao, AI Jiuying, ZHAO Wenhui, MA Honghao, SHEN Zhaowu. Effect of Charge Mode on Interface Wave of Copper/Steel Explosive Welding and Wave Formation Mechanism[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025203. doi: 10.11858/gywlxb.20190844 |
[1] |
NASSIRI A, KINSEY B. Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian-Eulerian (ALE) [J]. Journal of Manufacturing Processes, 2016, 24: 376–381. doi: 10.1016/j.jmapro.2016.06.017
|
[2] |
ABE A. Numerical study of the mechanism of wavy interface generation in explosive welding [J]. JSME International Journal Series B—Fluids and Thermal Engineering, 1997, 40: 395–401. doi: 10.1299/jsmeb.40.395
|
[3] |
YUAN X, WANG W, CAO X, et al. Numerical study on the interfacial behavior of Mg/Al plate in explosive/impact welding [J]. Science & Engineering of Composite Materials, 2017, 24(6): 833–843.
|
[4] |
TABBATAEE M, MAHMOUDI J. Finite element simulation of explosive welding [J]. Journal of Applied Physics, 2014, 24(3): 349–359.
|
[5] |
MOUSAVI A A A, BURLEY S J, AL-HASSANI S T S. Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives [J]. International Journal of Impact Engineering, 2005, 31(6): 719–734. doi: 10.1016/j.ijimpeng.2004.03.003
|
[6] |
MOUSAVI A A A, AL-HASSANI S T S. Simulation of wave and jet formations in explosive/impact welding [C]//ASME 7th Biennial Conference on Engineering Systems Design and Analysis. Manchester, England, 2004: 265–274.
|
[7] |
王宇新, 李晓杰, 孙国, 等. 无网格MPM法三维爆炸焊接数值模拟 [J]. 计算力学学报, 2013, 30(1): 34–38. doi: 10.7511/jslx201301006
WANG Y X, LI X J, SUN G, et al. Three dimensional simulation of the explosive welding by using of the MPM [J]. Chinese Journal of Computational Mechanics, 2013, 30(1): 34–38. doi: 10.7511/jslx201301006
|
[8] |
刘江, 郑远远, 沈宗宝, 等. 基于SPH方法的爆炸焊接过程模拟 [J]. 焊接技术, 2013, 42(12): 17–20.
LIU J, ZHENG Y Y, SHEN Z B, et al. Simulation of explosive welding process based on SPH method [J]. Welding Technology, 2013, 42(12): 17–20.
|
[9] |
周春华, 史长根, 蔡立艮, 等. 爆炸焊接布药工艺的研究 [J]. 焊接技术, 2002, 31(6): 17–18. doi: 10.3969/j.issn.1002-025X.2002.06.008
ZHOU C H, SHI C G, CAI L G, et al. Research on dynamite-distributing technology of explosive welding [J]. Welding Technology, 2002, 31(6): 17–18. doi: 10.3969/j.issn.1002-025X.2002.06.008
|
[10] |
董刚, 周春华, 史长根, 等. 爆炸焊接不等厚度布药工艺 [J]. 焊接, 2004(6): 35–38. doi: 10.3969/j.issn.1001-1382.2004.06.010
DONG G, ZHOU C H, SHI C G, et al. Unequal thickness arranging explosive technology of explosive welding [J]. Welding, 2004(6): 35–38. doi: 10.3969/j.issn.1001-1382.2004.06.010
|
[11] |
缪广红, 李亮, 江向阳, 等. 双面爆炸焊接的数值模拟 [J]. 高压物理学报, 2018, 32(4): 1–8. doi: 10.11858/gywlxb.20180513
MIAO G H, LI L, JIANG X Y, et al. Numerical simulation of double sided explosive welding [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 1–8. doi: 10.11858/gywlxb.20180513
|
[12] |
LEE E, FINGER M, COLLINS W. JWL equation of state coefficients for high explosives [R]. Livermore, CA, USA: Lawrance Livermore National Laboratory, 1973.
|
[13] |
LIU G R, LIU M B. 光滑粒子流体动力学——一种无网格粒子法 [M]. 韩旭, 译. 长沙: 湖南大学出版社, 2005.
|
[14] |
程国强, 李守新. 金属材料在高应变率下的热粘塑性本构模型 [J]. 弹道学报, 2004, 11(6): 18–22.
CHENG G Q, LI S X. Thermal viscoplastic constitutive model of metallic materials at high strain rate [J]. Journal of Ballistics, 2004, 11(6): 18–22.
|
[15] |
张振逵, 吴绍尧. 用半圆柱法测定铜-钢爆炸焊接窗口及合理药量 [J]. 焊接学报, 1980(3): 17–30, 67.
ZHANG Z K, WU S Y. Determination of explosive welding window and reasonable charge content of copper-steel by semi-cylindrical method [J]. Transactions of the China Welding Institution, 1980(3): 17–30, 67.
|
[16] |
SUI G F, LI J S, SUN F, et al. 3D finite element simulation of explosive welding of three-layer plates [J]. Science China-Physics Mechanics & Astronomy, 2011, 54(5): 890–896.
|
[17] |
孙锦山, 朱建士. 理论爆轰物理 [M]. 北京: 国防工业出版社, 1995: 356–418.
|
[18] |
MOUSAVI A A A, AL-HASSANI S T S. Finite element simulation of explosively-driven plate impact with application to explosive welding [J]. Materials & Design, 2008, 29(1): 1–19. doi: 10.1016/j.matdes.2006.12.012
|
[19] |
蔡立艮, 卢红标, 周春华, 等. 爆炸焊接布药工艺与微观结合界面形貌分析 [J]. 爆破, 2010, 27(1): 78–81. doi: 10.3963/j.issn.1001-487X.2010.01.021
CAI L G, LU H B, ZHOU C H, et al. Arranging explosive technology of explosive welding and microanalysis of bonging interfaces [J]. Blasting, 2010, 27(1): 78–81. doi: 10.3963/j.issn.1001-487X.2010.01.021
|
[20] |
王克鸿, 张德库, 张文军. 爆炸焊接技术研究进展 [J]. 机械制造与自动化, 2011, 40(2): 1–5. doi: 10.3969/j.issn.1671-5276.2011.02.001
WANG K H, ZHANG D K, ZHANG W J. Research progress of explosive welding technology [J]. Mechanical Manufacturing and Automation, 2011, 40(2): 1–5. doi: 10.3969/j.issn.1671-5276.2011.02.001
|
[21] |
FINDIK F. Recent developments in explosive welding [J]. Materials & Design, 2011, 32(3): 1081–1082.
|
[22] |
袁晓丹. 铝-镁合金爆炸焊接层状复合界面形成机制及数值模拟 [D]. 太原: 太原理工大学, 2016.
YUAN X D. Formation mechanism and numerical simulation of layered composite interface in explosive welding of Al-Mg alloy [D]. Taiyuan: Taiyuan University of Technology, 2016.
|
[23] |
LI Y, WU Z. Microstructural characteristics and mechanical properties of 2205/AZ31B laminates fabricated by explosive welding [J]. Metals, 2017, 7(4): 125. doi: 10.3390/met7040125
|
[24] |
郑远谋. 爆炸焊接和爆炸复合材料 [M]. 北京: 国防工业出版社, 2017: 13–14.
|
[25] |
缪广红. 蜂窝结构炸药与双面爆炸复合的研究 [D]. 合肥: 中国科学技术大学, 2015.
MIAO G H. Research on honeycomb structure explosives and double sided explosive cladding [D]. Hefei: University of Science and Technology of China, 2015.
|
[26] |
王耀华. 金属板材爆炸焊接研究与实践 [M]. 北京: 国防工业出版社, 2007.
|
[27] |
缪广红, 马宏昊, 沈兆武, 等. 不锈钢-普碳钢的双面爆炸复合 [J]. 爆炸与冲击, 2015, 35(4): 536–540. doi: 10.11883/1001-1455(2015)04-0536-05
MIAO G H, MA H H, SHEN Z W, et al. Double-sided explosive recombination of stainless steel and plain carbon steel [J]. Explosion and Shock Waves, 2015, 35(4): 536–540. doi: 10.11883/1001-1455(2015)04-0536-05
|
[28] |
WANG X, ZHENG Y, LIU H, et al. Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method [J]. Materials & Design, 2012, 35: 210–219. doi: 10.1016/j.matdes.2011.09.047
|
[29] |
BAHRANI A S, BLACK T J, CROSSLAND B. The mechanics of wave formation in explosive welding [J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1967, 296(1445): 123–136.
|
[30] |
COWAN G R, BERGMANN O R, HOLTZMAN A H. Mechanism of bond zone wave formation in explosion-clad metals [J]. Metallurgical and Materials Transactions B, 1971, 2(11): 3145–3155. doi: 10.1007/BF02814967
|
[31] |
COWAN G R, HOLTZMAN A H. Flow configurations in colliding plates: explosive bonding [J]. Journal of Applied Physics, 1963, 34(4): 928–939. doi: 10.1063/1.1729565
|
[32] |
KOWALICK J F, HAY D R. A mechanism of explosive bonding [J]. Metallurgical and Materials Transactions B, 1971, 2(7): 1953–1958.
|
[33] |
REID S R, SHERIFF N H S. Prediction of the wave length of interface waves in symmetric explosive welding [J]. Journal of Mechanical Engineering Science, 1980, 18(2): 87–94.
|
[34] |
GODUNOV S K, DERIBAS A A, ZABRADINA V. Hydrodynamic effect in colliding solids [J]. Computational Physics, 1970, 5: 517–539. doi: 10.1016/0021-9991(70)90078-1
|
[1] | LI Qingwen, PAN Chuangchuang, ZHANG Xuelei, ZHONG Yuqi, LI Ling, NIE Fanfan, LI Wenxia, XU Mengjiao. Effect of CFRP Layers on the Energy Evolution of Axial Compressed Cylindrical Coal Based on Particle Flow Software[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 045302. doi: 10.11858/gywlxb.20240931 |
[2] | CHEN Zhengyan, WU Hongbo, CAI Xinyuan, MA Chengshuai, XIE Shoudong. Effect of Aensitization Methods on Detonation Performance of Emulsion Explosive in Simulated Plateau Environment[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045202. doi: 10.11858/gywlxb.20230838 |
[3] | GUAN Gongshun, DAI Xunyang, ZHANG Duo. High Velocity Impact Shielding Performance of Basalt Fiber Cloth/Al-Plate Composite Shields[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014102. doi: 10.11858/gywlxb.20210806 |
[4] | MAN Lianjie, YUAN Hongsheng, QIN Liping, ZHANG Li. Effects of Carbon on (Mg,Fe)SiO3 Bridgmanite under the Lower Mantle Pressure-Temperature Conditions[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060102. doi: 10.11858/gywlxb.20190788 |
[5] | LIU Yonggui, SHEN Lingyan. Effect of the Fixed Temperature Interface on the Propagation of the Phase Transition Wave[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 042301. doi: 10.11858/gywlxb.20170559 |
[6] | ZHENG Kang, CHEN Li, FANG Qin, GAO Fei. Tensile Properties of CFRP/Epoxy Gel Composite Strip[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 794-802. doi: 10.11858/gywlxb.2017.06.015 |
[7] | NI Xiao-Jun, MA Hong-Hao, SHEN Zhao-Wu, JIANG Yao-Gang, LI Lei. Experimental Measurement and Numerical Simulation of Incident Shock Wave Pressure on the Fluid-Solid Interface[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 528-534. doi: 10.11858/gywlxb.2013.04.010 |
[8] | ZHANG Bao-Xi, HA Yue, DENG Yun-Fei, PANG Bao-Jun. Optimal Structural Design of Stuffed Shields with Kevlar Fiber Clothes against Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 105-112. doi: 10.11858/gywlxb.2013.01.015 |
[9] | REN Hui-Lan, NING Jian-Guo, XU Xiang-Zhao. The 3-D Numerical Simulation for Different Explosive Charges in the Fortifications[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 216-222. doi: 10.11858/gywlxb.2013.02.008 |
[10] | HA Yue, LIU Zhi-Yong, GUAN Gong-Shun, PANG Bao-Jun. Damage Investigation of Hypervelocity Impact on Woven Fabric of Basalt Fiber[J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 557-563. doi: 10.11858/gywlxb.2012.05.012 |
[11] | HA Yue, GUAN Gong-Shun, CHI Run-Qiang, PANG Bao-Jun. Investigation of Residual Velocity of Aluminum Projectiles at Hypervelocity Impact on Woven of Basalt Fiber[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 273-280. doi: 10.11858/gywlxb.2012.03.005 |
[12] | LI Jin-He, ZHAO Ji-Bo, TAN Duo-Wang, WANG Yan-Ping, ZHANG Yuan-Ping. Effect on the Near Field Shock Wave Pressure of Underwater Explosion of Aluminized Explosive at Different Initiation Modes[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 289-293. doi: 10.11858/gywlxb.2012.03.007 |
[13] | LI Xiao-Jie, MO Fei, YAN Hong-Hao, ZHANG Cheng-Jiao. Numerical Simulation of the Oblique Collision in Explosive Welding[J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 173-176 . doi: 10.11858/gywlxb.2011.02.014 |
[14] | XU Sen, LIU Da-Bin, PENG Jin-Hua, WANG Jian-Ling, GUO Wei, JIN Peng-Gang, JIA Xian-Zheng. Study on the Shock Wave Attenuation of the Booster Charge in the PMMA Gap[J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 431-437 . doi: 10.11858/gywlxb.2010.06.005 |
[15] | HU Jin-Biao, LIU Ji-Ping, TAN Hua, YANG Jia-Ling, TANG Zhi-Ping. Study of Thermal Relaxation at CHBr3/NaCl Interface under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 134-140 . doi: 10.11858/gywlxb.2001.02.010 |
[16] | TAN Hua. Shock Temperature Measurement for Metals-Influences of a Gap Interface between the Driver Plate and the Metal Film Sample on the Shock Temperature Measurement by Using Radiometry[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 161-168 . doi: 10.11858/gywlxb.1999.03.001 |
[17] | ZHAO Tong-Hu, HAN Li-Shi, HE Zhi. The Rectangular Diffraction of Detonation Wave in the High Explosive RHT-901 and the Insensitive High Explosive IHE-2[J]. Chinese Journal of High Pressure Physics, 1998, 12(4): 264-270 . doi: 10.11858/gywlxb.1998.04.005 |
[18] | TAN Hua. Shock Temperature Measurements for Metals-Release Approximation at the Interface[J]. Chinese Journal of High Pressure Physics, 1996, 10(3): 161-169 . doi: 10.11858/gywlxb.1996.03.001 |
[19] | TAN Hua. Shock Temperature Measurements for Metal (Ⅰ)-Calibration of Pyrometers and Data Reduction for the Temperature at the Interface[J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 254-263 . doi: 10.11858/gywlxb.1994.04.003 |
[20] | TAN Hua, HAN Jun-Wan, WANG Xiao-Jiang, SU Lin-Xiang, LIU Li, LIU Jiang, CUI Ling. Explosive Shock Synthesis of Wurtzite Type Boron Nitride[J]. Chinese Journal of High Pressure Physics, 1991, 5(4): 241-253 . doi: 10.11858/gywlxb.1991.04.001 |