Citation: | ZHAO Weiye, ZHAO Dan, LÜ Pin, JIN Tao, MA Shengguo. Finite Element Calculation of Polycrystalline Shear-Compression Specimens with Static Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024203. doi: 10.11858/gywlxb.20190836 |
[1] |
董湘怀, 仲町英治. 晶体塑性模型在板材成形计算机模拟中的应用 [J]. 中国机械工程, 1997, 8(4): 27–30, 118.
DONG X H, NAKAMACHI E. Application of crystal plastic model in computer simulation of sheet metal forming [J]. China Mechanical Engineering, 1997, 8(4): 27–30, 118.
|
[2] |
刘海军, 方刚, 曾攀. 基于晶体塑性理论的大变形数值模拟技术 [J]. 塑性工程学报, 2006, 13(2): 1–8, 28. doi: 10.3969/j.issn.1007-2012.2006.02.001
LIU H J, FANG G, ZENG P. Numerical simulation of large deformation based on the theory of crystal plasticity [J]. Journal of Plastic Engineering, 2006, 13(2): 1–8, 28. doi: 10.3969/j.issn.1007-2012.2006.02.001
|
[3] |
皮华春, 韩静涛, 薛永栋. 金属塑性成形的晶体塑性学有限元模拟研究进展 [J]. 机械工程学报, 2006, 42(3): 15–21. doi: 10.3321/j.issn:0577-6686.2006.03.003
PI H C, HAN J T, XUE Y D. Progress in finite element simulation of metal plasticity forming with crystal plasticity [J]. Journal of Mechanical Engineering, 2006, 42(3): 15–21. doi: 10.3321/j.issn:0577-6686.2006.03.003
|
[4] |
司良英. FCC金属冷加工织构演变的晶体塑性有限元模拟 [D]. 沈阳: 东北大学, 2009.
SI L Y. Finite element simulation of crystal plasticity in FCC metal cold working texture evolution [D]. Shenyang: Northeastern University, 2009.
|
[5] |
司良英, 邓关宇, 吕程. 基于Voronoi图的晶体塑性有限元多晶几何建模 [J]. 材料与冶金学报, 2009, 8(3): 193–197, 216.
SI L Y, DENG G Y, LÜ C. Crystal plastic finite element polycrystalline geometry modeling based on Voronoi diagram [J]. Journal of Materials and Metallurgy, 2009, 8(3): 193–197, 216.
|
[6] |
张丰果, 董湘怀. 微塑性成形模拟材料细观建模 [J]. 模具技术, 2011(3): 16–19.
ZHANG F G, DONG X H. Microplastic forming simulates material microscopic modeling [J]. Mould Technology, 2011(3): 16–19.
|
[7] |
郑文, 徐松林, 蔡超. 基于Hopkinson压杆的动态压剪复合加载实验研究 [J]. 力学学报, 2012, 44(1): 124–131.
ZHENG W, XU S L, CAI C. Experimental study on dynamic compression shear composite loading based on Hopkinson compression bar [J]. Journal of Mechanics, 2012, 44(1): 124–131.
|
[8] |
章超, 徐松林, 王道荣. 花岗岩动静态压剪复合加载实验研究 [J]. 固体力学学报, 2014, 35(2): 115–123.
ZHANG C, XU S L, WANG D R. Experimental study on dynamic and static compressor-shear composite loading of granite [J]. Journal of Solid Mechanics, 2014, 35(2): 115–123.
|
[9] |
李雪艳, 李志斌, 张舵. 闭孔泡沫铝准静态压剪性能研究 [J]. 高压物理学报, 2018, 32(3): 52–59. doi: 10.11858/gywlxb.20170655
LI X Y, LI Z B, ZHANG D. Study on quasi-static compressive shear properties of aluminum foam with closed-cell [J]. Journal of High Pressure Physics, 2018, 32(3): 52–59. doi: 10.11858/gywlxb.20170655
|
[10] |
RITTEL D, LEE S, RAVICHANDRAN G. A Shear-compression specimen for large strain testing [J]. Experimental Mechanics, 2002, 42(1): 58–64. doi: 10.1007/BF02411052
|
[11] |
RITTEL D, RAVICHANDRAN G, LEE S. Large strain constitutive behavior of OFHC copper over a wide range of strain rates using the shear compression specimen [J]. Mechanics of Materials, 2002, 34(10): 627–642. doi: 10.1016/S0167-6636(02)00164-3
|
[12] |
DOROGOY A, RITTEL D. A numerical study of the applicability of the shear compression specimen to parabolic hardening materials [J]. Experimental Mechanics, 2006, 46(3): 355–366. doi: 10.1007/s11340-006-6414-8
|
[13] |
DOROGOY A, RITTEL D. Numerical validation of the shear compression specimen. Part Ⅱ: dynamic large strain testing [J]. Experimental Mechanics, 2005, 45(2): 178–185. doi: 10.1007/BF02428191
|
[14] |
DOROGOY A, RITTEL D. Numerical validation of the shear compression specimen. Part I: quasi-static large strain testing [J]. Experimental Mechanics, 2005, 45(2): 167–177. doi: 10.1007/BF02428190
|
[15] |
DOROGOY A, RITTEL D, GODINGER A. Modification of the shear-compression specimen for large strain testing [J]. Experimental Mechanics, 2015, 55(9): 1627–1639. doi: 10.1007/s11340-015-0057-6
|
[16] |
VURAL M, MOLINARI A, BHATTACHARYYA N. Analysis of slot orientation in shear-compression specimen (SCS) [J]. Experimental Mechanics, 2010, 51(3): 263–273.
|
[17] |
ZHAO J, KNAUSS W G, RAVICHANDRAN G. A new shear-compression-specimen for determining quasistatic and dynamic polymer properties [J]. Experimental Mechanics, 2008, 49(3): 427–436.
|
[18] |
PIERCE D, ASARO R J, NEEDLEMAN A. Material rate sensitivity and localized deformation in crystalline solids [J]. Acta Metall, 1983, 31(12): 1951–1976. doi: 10.1016/0001-6160(83)90014-7
|
[19] |
ASARO R J, NEEDLEMAN A. Overview No. 42 texture development and strain hardening in rate dependent polycrystals [J]. Acta Metallurgica, 1985, 33(6): 923–953.
|
[20] |
HUANG Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program: MECH 178 [R]. Harvard University, 1991.
|
[21] |
王国军, 孙强. 4032合金热挤压棒材变形行为及形变织构 [J]. 黑龙江冶金, 2013, 33(2): 1–5, 8.
WANG G J, SUN Q. Deformation behavior and deformation texture of hot extruded 4032 alloy bar [J]. Heilongjiang Metallurgy, 2013, 33(2): 1–5, 8.
|
[22] |
HUANG S Y, ZHANG S R, LI D Y. Simulation of texture evolution during plastic deformation of FCC, BCC and HCP structured crystals with crystal plasticity based finite element method [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(8): 1817–1825. doi: 10.1016/S1003-6326(11)60936-9
|
[23] |
辛存, 赵聃, 闫晓鹏. 材料三维微结构表征及其晶体塑性有限元模拟 [J]. 计算力学学报, 2018, 36(2): 233–239.
XIN C, ZHAO D, YAN X P. 3D modeling microstructure and crystal plasticity finite element simulation [J]. Journal of Computational Mechanics, 2018, 36(2): 233–239.
|
[24] |
齐康, 闫昊, 陈祥瑶. 利用ABAQUS模拟不同模态下的金属切削过程 [J]. 机械工程与自动化, 2018(2): 93–94.
QI K, YAN H, CHEN X Y. Metal cutting processes in different modes are simulated by ABAQUS [J]. Mechanical Engineering and Automation, 2018(2): 93–94.
|
[1] | MI Xingyu, ZHONG Zheng, JIANG Zhaoxiu, WANG Yonggang. Effect of FCC Metal Crystal Orientation on Void Growth under High Strain Rate Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024204. doi: 10.11858/gywlxb.20220711 |
[2] | WAN Xi, YAO Songlin, PEI Xiaoyang. Phase Field Modeling of the Evolution of Helium Bubbles in Shock Loaded Aluminum[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014203. doi: 10.11858/gywlxb.20210791 |
[4] | YE Changqing, CHEN Ran, LIU Guisen, LIU Jingnan, HU Jianbo, YU Yuying, WANG Dong, CHEN Kaiguo, SHEN Yao. Crystal Plasticity Finite Element Simulation of Polycrystal Aluminum under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064203. doi: 10.11858/gywlxb.20220605 |
[5] | LI Zuo, ZHANG Fengling, LIAO Dalin. Elastic Properties of HBT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 041301. doi: 10.11858/gywlxb.20190823 |
[6] | LIU Jingnan, YE Changqing, LIU Guisen, SHEN Yao. Crystal Plasticity Finite Element Theoretical Models and Applications for High Temperature, High Pressure and High Strain-Rate Dynamic Process[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874 |
[7] | ZHENG Songlin. Advances in the Study of Dynamic Response of Crystalline Materials by Crystal Plasticity Finite Element Modeling[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030108. doi: 10.11858/gywlxb.20190725 |
[8] | LIU Jingnan, YE Changqing, CHEN Kaiguo, YU Yuying, SHEN Yao. Crystal Plasticity Finite Element Simulation of High-Rate Shock Deformation Process of <100> LiF[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014101. doi: 10.11858/gywlxb.20180551 |
[9] | ZHAO Ji-Bo, LI Ke-Wu, FU Hua, ZHAO Feng. Research on the Friction Coefficient between Explosive and Different Materials[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 591-596. doi: 10.11858/gywlxb.2014.05.013 |
[10] | JIANG Xi-Bo, GUO Song, FENG Song, PENG Jin-Hua. Measurement of Dynamic Friction Coefficient of Several Typical Pyrotechnics[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 125-131. doi: 10.11858/gywlxb.2013.01.018 |
[11] | CHEN Li-Xue, ZHU Pin-Wen, MA Hong-An, GUO Wei-Li, CHEN Hong-Liang, SONG Yan-Li, JIA Xiao-Peng, ZOU Guang-Tian. Study on Raman Spectrum of Synthesized cBN Crystal Block[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 67-71 . doi: 10.11858/gywlxb.2008.01.015 |
[12] | LIN Yu-Liang, LU Fang-Yun, LU Li. The Application of Quartz Transducer Technique in SHPB[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 299-304 . doi: 10.11858/gywlxb.2005.04.003 |
[13] | Shen Ze-Xiang. High-Pressure Raman Study of Non-Linear Optical Crystals[J]. Chinese Journal of High Pressure Physics, 2000, 14(2): 92-98 . doi: 10.11858/gywlxb.2000.02.002 |
[14] | CHEN Liang-Chen, WANG Li-Jun, GU Hui-Cheng, LI Feng-Ying, ZHOU Lei, CHE Rong-Zheng, XIU Li-Song. Crystalline-Amorphous Transition of LiB3O5 under High Pressure[J]. Chinese Journal of High Pressure Physics, 1998, 12(4): 250-253 . doi: 10.11858/gywlxb.1998.04.002 |
[15] | ZHANG Tie-Chen, YU San, GUO Wei-Li, LIU Jian-Ting, ZOU Guang-Tian, LI Dong-Mei. Observation on Original Crystals of hBN and cBN by EMS[J]. Chinese Journal of High Pressure Physics, 1996, 10(1): 76-80 . doi: 10.11858/gywlxb.1996.01.012 |
[16] | YAN Zu-Tong. Equation of State for Alkali Halide Crystals High Pressure[J]. Chinese Journal of High Pressure Physics, 1995, 9(3): 234-240 . doi: 10.11858/gywlxb.1995.03.013 |
[17] | ZHANG Tie-Chen, GUO Wei-Li, ZOU Guang-Tian, HU En-Liang, YU Hong-Chang, LI Kai-Song. Impurity and Colouration Mechanism in cBN Crystal[J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 285-289 . doi: 10.11858/gywlxb.1994.04.007 |
[18] | TANG Wen-Hui. The Pressure and Temperature Dependence of Thermal Conductivity for Nonmetal Crystals[J]. Chinese Journal of High Pressure Physics, 1994, 8(2): 125-132 . doi: 10.11858/gywlxb.1994.02.006 |
[19] | ZHAO Yong-Nian, ZOU Guang-Tian. High-Pressure Raman Spectra and Structure Phase Transition for Molecule Crystals[J]. Chinese Journal of High Pressure Physics, 1989, 3(4): 269-278 . doi: 10.11858/gywlxb.1989.04.002 |
[20] | SUN Feng-Guo, LI Yong. The Calculation of Thermal Expansion Coefficients of Several Alkali Halide Crystals[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 148-151 . doi: 10.11858/gywlxb.1989.02.007 |