Volume 34 Issue 2
Apr 2020
Turn off MathJax
Article Contents
LI Jianping, LIU Siqi. Structure Optimization of Square Explosive Dispersion Device[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 023301. doi: 10.11858/gywlxb.20190835
Citation: LI Jianping, LIU Siqi. Structure Optimization of Square Explosive Dispersion Device[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 023301. doi: 10.11858/gywlxb.20190835

Structure Optimization of Square Explosive Dispersion Device

doi: 10.11858/gywlxb.20190835
  • Received Date: 16 Sep 2019
  • Rev Recd Date: 21 Oct 2019
  • Issue Publish Date: 25 Jan 2020
  • This paper presents a numerical model of the square dispersing device for simulating the process of shell failure and fuel dispersion by LS-DYNA software. Combined with the results of the field experiments, this model reveals in detail the influence of the fillet angle and groove depth on the shell rupture process and fuel dispersion speed. The results show that the shell edge would no longer rupture when the fillet radius increases to 10 mm or the groove depth increases to 1.2 mm, since different groove depth would effectively reduce the nonuniform shell rupture. And when the depth of edge and middle groove is 1.2 mm and 1.6 mm respectively, the shell is uniformly ruptured. In addition, a special dispersing device with 10 mm fillet angle, 0.8 mm edge groove depth and 1.2 mm middle groove depth, could not only make the shell uniformly ruptured, but also increase the strength of the shell. Meanwhile, it would reduce the average velocity difference of fuel dispersion by 22%, which effectively improve the fuel dispersing efficiency.

     

  • loading
  • [1]
    薛田, 徐更光, 黄求安, 等. 爆炸抛撒过程的研究进展 [J]. 科学技术与工程, 2015, 15(21): 60–67. doi: 10.3969/j.issn.1671-1815.2015.21.012

    XUE T, XU G G, HUANG Q A, et al. Review on explosive dispersion [J]. Science Technology and Engineering, 2015, 15(21): 60–67. doi: 10.3969/j.issn.1671-1815.2015.21.012
    [2]
    LIU G, HOU F, CAO B. Experimental study of fuel-air explosive [J]. Combustion, Explosion and Shock Waves, 2008, 44(2): 213–217. doi: 10.1007/s10573-008-0028-7
    [3]
    韩宝成, 雷红飞, 徐豫新, 等. 液体灭火弹动态抛撒区域工程计算方法 [J]. 含能材料, 2011, 19(3): 310–314. doi: 10.3969/j.issn.1006-9941.2011.03.015

    HAN B C, LEI H F, XU Y X, et al. Computational model of dynamic dispersed area of liquid fire-extinguishing ammunition [J]. Chinese Journal of Enegretic Materials, 2011, 19(3): 310–314. doi: 10.3969/j.issn.1006-9941.2011.03.015
    [4]
    胡涛, 刁伟, 崔正辉, 等. 水袋在爆破水雾除尘技术中的应用 [J]. 水科学与工程技术, 2012(4): 52–54. doi: 10.3969/j.issn.1672-9900.2012.04.018

    HU T, DIAO W, CUI Z H, et al. Computational model of dynamic dispersed area of liquid fire-extinguishing ammunition [J]. Water Sciences and Engineering Technology, 2012(4): 52–54. doi: 10.3969/j.issn.1672-9900.2012.04.018
    [5]
    高重阳, 施惠基, 姚振汉. 薄壁柱壳在内部爆炸载荷下膨胀断裂的研究 [J]. 爆炸与冲击, 2000, 20(2): 160–167. doi: 10.3321/j.issn:1001-1455.2000.02.012

    GAO C Y, SHI H J, YAO Z H. Dynamic fracture of thin cylindrical shells subject to internal explosive loading [J]. Explosion and Shock Waves, 2000, 20(2): 160–167. doi: 10.3321/j.issn:1001-1455.2000.02.012
    [6]
    王晔, 白春华, 李建平. 弹壳体结构对燃料装药抛撒速率影响的数值模拟研究 [J]. 兵工学报, 2017, 38(1): 43–49. doi: 10.3969/j.issn.1000-1093.2017.01.006

    WANG Y, BAI C H, LI J P. Influence of shell structure on dispersing velocity of fuel-air mixture [J]. Acta Armamentarii, 2017, 38(1): 43–49. doi: 10.3969/j.issn.1000-1093.2017.01.006
    [7]
    张奇, 白春华, 刘庆明. 壳体对燃料近区抛散速度的影响 [J]. 应用力学学报, 2000, 17(3): 102–106. doi: 10.3969/j.issn.1000-4939.2000.03.019

    ZHANG Q, BAI C H, LIU Q M. Influence of shell casting on fuel near-field dispersal velocity [J]. Chinese Journal of Applied Mechanics, 2000, 17(3): 102–106. doi: 10.3969/j.issn.1000-4939.2000.03.019
    [8]
    ZHANG Q, BAI C H, LIU Q M. Study on near field dispersal of fuel air explosive [J]. Journal of Beijing Institute of Technology, 1999, 8(2): 113–118.
    [9]
    薛社生, 刘家骢, 彭金华. 液体燃料爆炸抛撒的近场阶段研究 [J]. 南京理工大学学报(自然科学版), 1997(4): 49–52.

    XUE S S, LIU J C, PENG J H. Study on the near-field phase of explosive throwing of liquid fuel [J]. Journal of Nanjing University of Science and Technology (Natural Science Edition), 1997(4): 49–52.
    [10]
    王在成, 姜春兰. 机载布撒器弹仓总体技术的发展与分析 [J]. 飞航导弹, 1999(10): 21–28.

    WANG Z C, JIANG C L. Development and analysis of the overall technology of airborne dispenser silo [J]. Flying Missile, 1999(10): 21–28.
    [11]
    LEE E L, HORMIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. Livermore: Lawrence Livermore National Laboratory, 1968.
    [12]
    陈明生, 白春华, 李建平. 燃料抛撒的初始速率与结构动态响应数值模拟 [J]. 含能材料, 2015, 23(4): 323–329. doi: 10.11943/j.issn.1006-9941.2015.04.003

    CHEN M S, BAI C H, LI J P. Simulation on initial velocity and structure dynamic response for fuel dispersion [J]. Chinese Journal of Energetic Materials, 2015, 23(4): 323–329. doi: 10.11943/j.issn.1006-9941.2015.04.003
    [13]
    MEYERS M A. Dynamic behavior of materials [M]. John Wiley & Sons, 1994: 124.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(9)

    Article Metrics

    Article views(7328) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return