Citation: | WANG Lixiao, CHEN Qidong, LIU Xin. Damage Evolution in Concrete Interfacial Transition Zone with Ultrasonic Dynamic Load[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833 |
[1] |
陈惠苏, 孙伟, STROEVEN P. 水泥基复合材料集料与浆体界面研究综述(二):界面微观结构的形成、劣化机理及其影响因素 [J]. 硅酸盐学报, 2004, 32(1): 70–79. doi: 10.3321/j.issn:0454-5648.2004.01.013
CHEN H S, SUN W, STROEVEN P. Interfacial transition zone between aggregate and paste in cementitious composites (Ⅱ): mechanism of formation and degradation of interfacial transition zone microstructure, and its influence factors [J]. Journal of the Chinese Ceramic Society, 2004, 32(1): 70–79. doi: 10.3321/j.issn:0454-5648.2004.01.013
|
[2] |
徐晶, 王先志. 纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型 [J]. 硅酸盐学报, 2018, 46(8): 1053–1058.
XU J, WANG X Z. Effect of nano-silica modification on interfacial transition zone in concrete and its multiscale modelling [J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1053–1058.
|
[3] |
YANG C C, CHO S W. Approximate migration coefficient of percolated interfacial transition zone by using the accelerated chloride migration test [J]. Cement and Concrete Research, 2005, 35: 344–350. doi: 10.1016/j.cemconres.2004.05.038
|
[4] |
AQUINO M J, LI Z, SHAH S P. Mechanical properties of the aggregate and cement interface [J]. Advanced Cement Based Materials, 1995, 2(6): 211–223. doi: 10.1016/1065-7355(95)90040-3
|
[5] |
LEE K M, PARK J H. A numerical model for elastic modulus of concrete considering interfacial transition zone [J]. Cement and Concrete Research, 2008, 38(3): 396–402. doi: 10.1016/j.cemconres.2007.09.019
|
[6] |
王怀亮, 宋玉普. 多轴应力状态下混凝土的动态强度准则 [J]. 哈尔滨工业大学学报, 2014, 46(4): 93–97.
WANG H L, SONG Y P. A dynamic strength criterion of concrete under multiaxial stress state [J]. Journal of Harbin Institute of Technology, 2014, 46(4): 93–97.
|
[7] |
杜修力, 金浏. 考虑过渡区界面影响的混凝土宏观力学性质研究 [J]. 工程力学, 2012, 29(12): 72–79. doi: 10.6052/j.issn.1000-4750.2011.04.0216
DU X L, JIN L. Research on the influence of interfacial transition zone on the macro-mechanical properties of concrete [J]. Engineering Mechanics, 2012, 29(12): 72–79. doi: 10.6052/j.issn.1000-4750.2011.04.0216
|
[8] |
王哲. 沿应变路径准静态加载时混凝土的极限状态现象 [J]. 北京交通大学学报, 2010, 34(1): 30–34. doi: 10.3969/j.issn.1673-0291.2010.01.007
WANG Z. Phenomena of concrete limit state under quasi-static loading along strain paths [J]. Journal of Beijing Jiaotong University, 2010, 34(1): 30–34. doi: 10.3969/j.issn.1673-0291.2010.01.007
|
[9] |
GUINEA G V, EL-SAYED K, ROCCO C G, et al. The effect of the bond between the matrix and the aggregates on the cracking mechanism and fracture parameters of concrete [J]. Cement and Concrete Research, 2002, 32(12): 1961–1970. doi: 10.1016/S0008-8846(02)00902-X
|
[10] |
马巍, 任建伟, 胡俊, 等. 基于不同加载制度的轻骨料混凝土动态冲击性能 [J]. 硅酸盐通报, 2019, 38(4): 974–982.
MA W, REN J W, HU J, et al. Dynamical shocking property of light-weighting aggregates concrete based on impact loading regimes [J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 974–982.
|
[11] |
阮欣, 李越, 金泽人, 等. 混凝土二维细观骨料建模方法综述 [J]. 同济大学学报(自然科学版), 2018, 46(5): 604–612.
RUAN X, LI Y, JIN Z R, et al. Review of two-dimensional meso-modeling methods of concrete aggregate [J]. Journal of Tongji University (Natural Science), 2018, 46(5): 604–612.
|
[12] |
刘建南, 张昌锁. 过渡区界面对混凝土劈裂性能影响的试验与数值模拟 [J]. 科学技术与工程, 2018, 18(18): 269–274. doi: 10.3969/j.issn.1671-1815.2018.18.044
LIU J N, ZHANG C S. Experiment and numerical simulation on the influence of interfacial transition zone on concrete splitting performance [J]. Science Technology and Engineering, 2018, 18(18): 269–274. doi: 10.3969/j.issn.1671-1815.2018.18.044
|
[13] |
YANG C C. Effect of the interfacial transition zone on the transport and the elastic properties of mortar [J]. Magazine of Concrete Research, 2003, 55(4): 305–312. doi: 10.1680/macr.2003.55.4.305
|
[14] |
过镇海, 李卫. 混凝土在不同应力-温度途径下的变形试验和本构关系 [J]. 土木工程学报, 1993, 26(5): 58–69. doi: 10.3321/j.issn:1000-131X.1993.05.001
GUO Z H, LI W. Deformation testing and constitutive relationship of concrete under different stress-temperature paths [J]. China Civil Engineering Journal, 1993, 26(5): 58–69. doi: 10.3321/j.issn:1000-131X.1993.05.001
|
[15] |
刘海峰, 韩莉. 二维骨料随机分布混凝土的动态力学性能数值模拟 [J]. 高压物理学报, 2016, 30(3): 191–199. doi: 10.11858/gywlxb.2016.03.003
LIU H F, HAN L. Numerical simulation of dynamic mechanical behavior of concrete with two-dimensional random distribution of coarse aggregate [J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 191–199. doi: 10.11858/gywlxb.2016.03.003
|
[16] |
蒋橙炜, 陈启东, 顾泽堃. 超声破碎混凝土的力学模型与仿真分析 [J]. 机械制造与自动化, 2019, 48(2): 84–88.
JIANG C W, CHEN Q D, GU Z K. Mechanical model and simulation analysis of ultrasonic crushed concrete [J]. Machine Building & Automation, 2019, 48(2): 84–88.
|
[17] |
WEIBULL W. A statistical distributions function of wide applicability [J]. Journal of Applied Mechanics, 1951, 18: 293–297.
|