Citation: | MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827 |
[1] |
SCHÄFFER T E, IONESCUZANETTI C, PROKSCH R, et al. Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges [J]. Chemistry of Materials, 1998, 10(8): 946–946.
|
[2] |
SHAO Y, ZHAO H P, FENG X Q, et al. Discontinuous crack-bridging model for fracture toughness analysis of nacre [J]. Journal of the Mechanics and Physics of Solids, 2012, 60(8): 1400–1419. doi: 10.1016/j.jmps.2012.04.011
|
[3] |
万欣娣, 任凤章, 刘平, 等. 贝壳珍珠层的研究现状 [J]. 材料导报, 2006, 20(10): 21–24. doi: 10.3321/j.issn:1005-023X.2006.10.006
WAN X D, REN F Z, LIU P, et al. Research status of shell nacre [J]. Materials Reports, 2006, 20(10): 21–24. doi: 10.3321/j.issn:1005-023X.2006.10.006
|
[4] |
BERTOLDI K, BIGONI D, DRUGAN W J. Nacre: an orthotropic and bimodular elastic material [J]. Composites Science and Technology, 2008, 68(6): 1363–1375. doi: 10.1016/j.compscitech.2007.11.016
|
[5] |
马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734.
MA X Y, LIANG H Y, WANG L F. Mechanical properties of three-dimensional printed shell biomimetic structures [J]. Science Bulletin, 2016, 61(7): 728–734.
|
[6] |
XU X P, NEEDLEMAN A. Void nucleation by inclusion debonding in a crystal matrix [J]. Modelling and Simulation in Materials Science and Engineering, 1993, 1(2): 111–132. doi: 10.1088/0965-0393/1/2/001
|
[7] |
HOSSEINI M R, TAHERI-BEHROOZ F, SALAMAT-TALAB M. Mode I interlaminar fracture toughness of woven glass/epoxy composites with mat layers at delamination interface [J]. Polymer Testing, 2019, 78: 105943. doi: 10.1016/j.polymertesting.2019.105943
|
[8] |
HUA X G, LI H G, LU Y, et al. Interlaminar fracture toughness of glare laminates based on asymmetric double cantilever beam (ADCB) [J]. Composites Part B: Engineering, 2019, 163: 175–184. doi: 10.1016/j.compositesb.2018.11.040
|
[9] |
宗要武. 基于内聚力模型的钢纤维水泥基材料界面性能分析 [D]. 重庆: 重庆大学, 2018: 23–27.
ZONG Y W. Analysis of interfacial bonding properties of cement-based materials with steel fibers based on cohesive zone model [D]. Chongqing: Chongqing University, 2018: 23–27.
|
[10] |
ALFARO M V C, SUIKER A S J, RENÉ D B, et al. Analysis of fracture and delamination in laminates using 3D numerical modelling [J]. Engineering Fracture Mechanics, 2009, 76(6): 761–780. doi: 10.1016/j.engfracmech.2008.09.002
|
[11] |
LIU Y, DER M F P, SLUYS L J. Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminate [J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 617–630. doi: 10.1016/j.tafmec.2018.07.004
|
[12] |
赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展 [J]. 航空学报, 2019, 40(1): 509–522.
ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates [J]. Acta Aeronauticaet Astronautica Sinica, 2019, 40(1): 509–522.
|
[13] |
寇剑锋, 徐绯, 郭家平, 等. 黏聚力模型破坏准则及其参数选取 [J]. 机械强度, 2011, 33(5): 714–718.
KOU J F, XU F, GUO J P, et al. Failure criterion of cohesion model and its parameter selection [J]. Mechanical Strength, 2011, 33(5): 714–718.
|
[14] |
American Society for Testing and Materials. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-01 [S]. West Conshohocken, PA: ASTM, 2007.
|
[15] |
O’BRIEN T K, JOHNSTON W M, TOLAND G J. Mode II interlaminar fracture toughness and fatigue characterization of a graphite epoxy composite material: NASA/TM-2010-216838 [R]. Hampton, VA: NASA, 2010.
|
[16] |
ARRESE A, BOYANO A I, DE G J, et al. A novel procedure to determine the cohesive law in DCB tests [J]. Composites Science and Technology, 2017, 152: 76–84. doi: 10.1016/j.compscitech.2017.09.012
|
[17] |
ARRESE A, INSAUSTI N, MUJIKA F, et al. A novel experimental procedure to determine the cohesive law in ENF tests [J]. Composites Science and Technology, 2019, 170: 42–50. doi: 10.1016/j.compscitech.2018.11.031
|