Volume 34 Issue 4
Jul 2020
Turn off MathJax
Article Contents
MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
Citation: MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827

Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites

doi: 10.11858/gywlxb.20190827
  • Received Date: 27 Aug 2019
  • Rev Recd Date: 14 Oct 2019
  • Publish Date: 25 Feb 2020
  • In this paper, the interlaminar fracture toughness of 3D printed mortar laminated composite was investigated by finite element numerical simulation. Firstly, finite element models of the model-I and model-II fracture toughness were established based on cohesive principle and displacement control loading method, and used to simulate the interlaminar opening and staggering process of composites. Then the reliability of the finite element numerical method was verified by compared with the experiment results. Finally, the effects of initial crack length, fracture toughness, initial interface stiffness, interface strength, bonding layer thickness and clear distance on the mechanical properties of 3D printed mortar laminated composite were analyzed. The results show that, for the model-I, reducing the initial crack length, increasing the fracture toughness and increasing the bonding layer thickness can improve interface bearing capacity; and the change of initial interface stiffness and interface strength has no effect on the peak value of tensile force. For the model-II, reducing the initial crack length, enhancing the interface strength, increasing the fracture toughness value and reducing the bonding layer thickness can improve the interface bearing capacity; and the change of the initial interface stiffness has no significant effect on the load-displacement curve.

     

  • loading
  • [1]
    SCHÄFFER T E, IONESCUZANETTI C, PROKSCH R, et al. Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges [J]. Chemistry of Materials, 1998, 10(8): 946–946.
    [2]
    SHAO Y, ZHAO H P, FENG X Q, et al. Discontinuous crack-bridging model for fracture toughness analysis of nacre [J]. Journal of the Mechanics and Physics of Solids, 2012, 60(8): 1400–1419. doi: 10.1016/j.jmps.2012.04.011
    [3]
    万欣娣, 任凤章, 刘平, 等. 贝壳珍珠层的研究现状 [J]. 材料导报, 2006, 20(10): 21–24. doi: 10.3321/j.issn:1005-023X.2006.10.006

    WAN X D, REN F Z, LIU P, et al. Research status of shell nacre [J]. Materials Reports, 2006, 20(10): 21–24. doi: 10.3321/j.issn:1005-023X.2006.10.006
    [4]
    BERTOLDI K, BIGONI D, DRUGAN W J. Nacre: an orthotropic and bimodular elastic material [J]. Composites Science and Technology, 2008, 68(6): 1363–1375. doi: 10.1016/j.compscitech.2007.11.016
    [5]
    马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734.

    MA X Y, LIANG H Y, WANG L F. Mechanical properties of three-dimensional printed shell biomimetic structures [J]. Science Bulletin, 2016, 61(7): 728–734.
    [6]
    XU X P, NEEDLEMAN A. Void nucleation by inclusion debonding in a crystal matrix [J]. Modelling and Simulation in Materials Science and Engineering, 1993, 1(2): 111–132. doi: 10.1088/0965-0393/1/2/001
    [7]
    HOSSEINI M R, TAHERI-BEHROOZ F, SALAMAT-TALAB M. Mode I interlaminar fracture toughness of woven glass/epoxy composites with mat layers at delamination interface [J]. Polymer Testing, 2019, 78: 105943. doi: 10.1016/j.polymertesting.2019.105943
    [8]
    HUA X G, LI H G, LU Y, et al. Interlaminar fracture toughness of glare laminates based on asymmetric double cantilever beam (ADCB) [J]. Composites Part B: Engineering, 2019, 163: 175–184. doi: 10.1016/j.compositesb.2018.11.040
    [9]
    宗要武. 基于内聚力模型的钢纤维水泥基材料界面性能分析 [D]. 重庆: 重庆大学, 2018: 23–27.

    ZONG Y W. Analysis of interfacial bonding properties of cement-based materials with steel fibers based on cohesive zone model [D]. Chongqing: Chongqing University, 2018: 23–27.
    [10]
    ALFARO M V C, SUIKER A S J, RENÉ D B, et al. Analysis of fracture and delamination in laminates using 3D numerical modelling [J]. Engineering Fracture Mechanics, 2009, 76(6): 761–780. doi: 10.1016/j.engfracmech.2008.09.002
    [11]
    LIU Y, DER M F P, SLUYS L J. Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminate [J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 617–630. doi: 10.1016/j.tafmec.2018.07.004
    [12]
    赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展 [J]. 航空学报, 2019, 40(1): 509–522.

    ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates [J]. Acta Aeronauticaet Astronautica Sinica, 2019, 40(1): 509–522.
    [13]
    寇剑锋, 徐绯, 郭家平, 等. 黏聚力模型破坏准则及其参数选取 [J]. 机械强度, 2011, 33(5): 714–718.

    KOU J F, XU F, GUO J P, et al. Failure criterion of cohesion model and its parameter selection [J]. Mechanical Strength, 2011, 33(5): 714–718.
    [14]
    American Society for Testing and Materials. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-01 [S]. West Conshohocken, PA: ASTM, 2007.
    [15]
    O’BRIEN T K, JOHNSTON W M, TOLAND G J. Mode II interlaminar fracture toughness and fatigue characterization of a graphite epoxy composite material: NASA/TM-2010-216838 [R]. Hampton, VA: NASA, 2010.
    [16]
    ARRESE A, BOYANO A I, DE G J, et al. A novel procedure to determine the cohesive law in DCB tests [J]. Composites Science and Technology, 2017, 152: 76–84. doi: 10.1016/j.compscitech.2017.09.012
    [17]
    ARRESE A, INSAUSTI N, MUJIKA F, et al. A novel experimental procedure to determine the cohesive law in ENF tests [J]. Composites Science and Technology, 2019, 170: 42–50. doi: 10.1016/j.compscitech.2018.11.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views(7576) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return