Volume 34 Issue 3
Jun 2020
Turn off MathJax
Article Contents
PENG Wenyang, ZHONG Bin, GU Yan, ZHANG Xu, YANG Shuqi, SHU Junxiang, QIN Shuang. Effects of Metal Interlayer and Air Gap on the Shock Initiation of Insensitive Explosives[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033402. doi: 10.11858/gywlxb.20190816
Citation: PENG Wenyang, ZHONG Bin, GU Yan, ZHANG Xu, YANG Shuqi, SHU Junxiang, QIN Shuang. Effects of Metal Interlayer and Air Gap on the Shock Initiation of Insensitive Explosives[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033402. doi: 10.11858/gywlxb.20190816

Effects of Metal Interlayer and Air Gap on the Shock Initiation of Insensitive Explosives

doi: 10.11858/gywlxb.20190816
  • Received Date: 27 Jul 2019
  • Rev Recd Date: 30 Aug 2019
  • Publish Date: 25 Nov 2019
  • The influences of air gap and metal interlayer on the shock initiation of the $\varnothing $50 mm stepped explosive B have been investigated by means of the sapphire flyer planar impact experiment and photonic doppler velocimetry (PDV) technique. In the experiment, a lithium fluoride (LiF) window was stuck to the rear interface of explosive sample to allow the rear interface velocity between the metal and the sample explosive be measured by PDV technique. Both the transmission shock pressure and the incident shock pressure can be obtained by the impedance-match method. The experiment results have shown that the air gap divided the impact compression process into quasi-isentropic compression and impact compression, respectively, and at the same time, the amplitude of the shock pressure was declined. Specifically, the shock wave attenuation range caused by 5 mm thick metal was achieved. When the explosive A was used as the booster, and with a 0.3 mm thick air gap and 5 mm thick metal experimental setup, the reaction of sample explosive B started in a range from 7 mm to 10 mm.

     

  • loading
  • [1]
    姬广富. 高能钝感炸药分子和晶体的结构和性能的理论研究 [D]. 南京: 南京理工大学, 2002.

    JI G F. Theoretical study on the structure and properties of molecules and crystalline of insensitive high explosives [D]. Nanjing: Nanjing University of Science and Technology, 2002.
    [2]
    章冠人. 凝聚炸药起爆动力学 [M]. 北京: 国防工业出版社, 1991.

    ZHANG G R. Initiation kinetics of condensed explosives [M]. Beijing: National Defense Industry Press, 1991.
    [3]
    陈朗, 伍俊英, 方青, 等. 固体炸药冲击起爆研究 [J]. 火炸药学报, 2004, 27(1): 1–4. doi: 10.3969/j.issn.1007-7812.2004.01.001

    CHEN L, WU J Y, FANG Q, et al. Investigation of solid explosives initiation under shock waves [J]. Chinese Journal of Explosives & Propellants, 2004, 27(1): 1–4. doi: 10.3969/j.issn.1007-7812.2004.01.001
    [4]
    胡湘渝, 黄风雷, 张德良. 铸装B炸药的隔板实验数值模拟 [C]//全国计算流体力学会议, 2000: 115–119.

    HU X Y, HUANG F L, ZHANG D L. Numerical simulation of separator experiment for cast B explosives [C]//National Conference on Computational Fluid Dynamics, 2000: 115–119.
    [5]
    郑波, 袁鹏刚. 验证板反射冲击波对固体推进剂冲击起爆影响的实验研究 [J]. 固体火箭技术, 2014, 37(5): 734–736.

    ZHENG B, YUAN P G. Experimental study of influence of reflected shock from witness plate on propellant SDT [J]. Journal of Solid Rocket Technology, 2014, 37(5): 734–736.
    [6]
    向梅, 黄毅民, 饶国宁, 等. 复合装药结构隔板实验与数值模拟 [J]. 兵工学报, 2013, 34(2): 246–250.

    XIANG M, HUANG Y M, RAO G N, et al. Experimental and numerical simulation study of the shockwave sensitivity of composite charge explosive [J]. Acta Armamentarii, 2013, 34(2): 246–250.
    [7]
    蔡进涛, 王桂吉, 赵剑衡, 等. 固体炸药的磁驱动准等熵压缩实验研究 [J]. 高压物理学报, 2010, 24(6): 455–460. doi: 10.11858/gywlxb.2010.06.009

    CAI J T, WANG G J, ZHAO J H, et al. Magnetically driven quasi-isentropic compression experiments of solid explosives [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 455–460. doi: 10.11858/gywlxb.2010.06.009
    [8]
    GUSTAVSEN R L, DATTELBAUM D M, SHEFFIELD S A, et al. Application of photonic Doppler velocimetry (PDV) to shock and detonation physics experiments: LA-UR-11-00886 [R]. Los Alamos, NM (United States): Los Alamos National Laboratory, 2011.
    [9]
    SARGIS P D, MOLAU N E, SWEIDER D, et al. Photonic Doppler velocimetry: UCRL-ID-133075 [R]. Livermore: Lawrence Livermore National Laboratory, 1999.
    [10]
    李建中, 王德田, 刘俊, 等. 多点光子多普勒测速仪及其在爆轰物理领域的应用 [J]. 红外与激光工程, 2016, 45(4): 0422001.

    LI J Z, WANG D T, LIU J, et al. Multi-channel photonic Doppler velocimetry and its application in the field of explosion physics [J]. Infrared and Laser Engineering, 2016, 45(4): 0422001.
    [11]
    奥尔连科 Л П. 爆炸物理学 [M]. 孙承纬, 译. 北京: 科学出版社, 2011.

    OРЛЕНКО Л П. Explosive physics [M]. Translated by SUN C W. Beijing: Science Press, 2011.
    [12]
    王礼立. 应力波基础 [M]. 第2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: Defense Industry Press, 2005.
    [13]
    张震宇, 田占东, 陈军, 等. 爆轰物理 [M]. 长沙: 国防科技大学出版社, 2016.

    ZHANG Z Y, TIAN Z D, CHEN J, et al. Detonation physics [M]. Changsha: National University of Defense Technology Press, 2016.
    [14]
    向梅, 黄毅民, 韩勇, 等. JO-9159与JB-9014复合药柱爆轰驱动平面飞片实验与数值模拟 [J]. 高压物理学报, 2014, 28(3): 379–384. doi: 10.11858/gywlxb.2014.03.018

    XIANG M, HUANG Y M, HAN Y, et al. Experimental study and numerical simulation of plane flyer driven by detonation of JO-9159 and JB-9014 composite charge [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 379–384. doi: 10.11858/gywlxb.2014.03.018
    [15]
    刘俊明, 张旭, 赵康, 等. 用PVDF压力计研究未反应JB-9014钝感炸药的Grüneisen参数 [J]. 高压物理学报, 2018, 32(5): 051301.

    LIU J M, ZHANG X, ZHAO K, et al. Using PVDF gauge to study Grüneisen parameter of unreacted JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051301.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views(8775) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return