Volume 34 Issue 2
Apr 2020
Turn off MathJax
Article Contents
WANG Tao, WANG Bing, LIN Jianyu, BAI Jingsong, LI Ping, ZHONG Min, TAO Gang. Numerical Analysis of Sensitivity of Tin Rayleigh-Taylor Instability to Model Parameters[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 022301. doi: 10.11858/gywlxb.20190813
Citation: WANG Tao, WANG Bing, LIN Jianyu, BAI Jingsong, LI Ping, ZHONG Min, TAO Gang. Numerical Analysis of Sensitivity of Tin Rayleigh-Taylor Instability to Model Parameters[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 022301. doi: 10.11858/gywlxb.20190813

Numerical Analysis of Sensitivity of Tin Rayleigh-Taylor Instability to Model Parameters

doi: 10.11858/gywlxb.20190813
  • Received Date: 22 Jul 2019
  • Rev Recd Date: 16 Sep 2019
  • The sensitivity of Rayleigh-Taylor instability of tin driven by explosion to the initial parameters of sample (initial amplitude, wavelength and thickness of sample) and the initial parameters of SG constitutive model are numerical investigated by using an in-house Eulerian detonation and shock wave code. It concludes that the initial parameters of sample have a significant effect on the RT instability of Sn. The Sn RT instability grows more slowly with the initial amplitude decreasing, and a cutoff initial amplitude exists. A most unstable mode (wavelength) exists, when the initial wavelength is larger than this value, the RT instability grows faster as the initial wavelength diminishes; on the contrary, the RT instability grows slower as the initial wavelength decreases. The larger thickness of sample can restrain the growth of RT instability greatly, and a cutoff thickness of sample also exists. The Sn RT instability growth is not sensitive to the strain hardening coefficient and exponent, and it is greatly sensitive to the pressure hardening coefficient and thermal softening coefficient. But it should be a practical path to estimate the material strength of Sn through modifying the pressure hardening coefficient of SG model.

     

  • loading
  • [1]
    TAYLOR G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I [J]. Proceedings of the Royal Society of London Series A, 1950, 201(1065): 192–196.
    [2]
    RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. doi: 10.1002/cpa.3160130207
    [3]
    CAMPBELL E M, HUNT J T, BLISS E S, et al. Nova experimental facility [J]. Review of Scientific Instruments, 1986, 57(8): 2101–2106. doi: 10.1063/1.1138755
    [4]
    DIMONTE G, TERRONES G, CHERNE F J, et al. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities [J]. Physical Review Letters, 2011, 107(26): 264502. doi: 10.1103/PhysRevLett.107.264502
    [5]
    PARK H S, LORENZ K T, CAVALLO R M, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate [J]. Physical Review Letters, 2010, 104(13): 135504. doi: 10.1103/PhysRevLett.104.135504
    [6]
    PARK H S, REMINGTON B A, BECKER R C, et al. Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures [J]. Physics of Plasmas, 2010, 17(5): 056314. doi: 10.1063/1.3363170
    [7]
    NUCKOLLS J, WOOD L, THIESSEN A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications [J]. Nature, 1972, 239(5368): 139–142. doi: 10.1038/239139a0
    [8]
    MCCRORY R L, MONTIERTH L, MORSE R L, et al. Nonlinear evolution of ablation-driven Rayleigh-Taylor instability [J]. Physical Review Letters, 1981, 46(5): 336–339. doi: 10.1103/PhysRevLett.46.336
    [9]
    LINDL J D, MEAD W C. Two-dimensional simulation of fluid instability in laser-fusion pellets [J]. Physical Review Letters, 1975, 34(20): 1273–1276. doi: 10.1103/PhysRevLett.34.1273
    [10]
    KIFONIDIS K, PLEWA T, SCHECK L, et al. Non-spherical core collapse supernovae-II. the late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A [J]. Astronomy & Astrophysics, 2006, 453(2): 661–678.
    [11]
    MAC LOW M M, ZAHNLE K. Explosion of comet Shoemaker-Levy 9 on entry into the Jovian atmosphere [J]. The Astrophysical Journal, 1994, 434: L33–L36. doi: 10.1086/187565
    [12]
    SHUVALOV V V, ARTEMIEVA N A. Numerical modeling of Tunguska-like impacts [J]. Planetary and Space Science, 2002, 50(2): 181–192. doi: 10.1016/S0032-0633(01)00079-4
    [13]
    KAUS B J P, PODLADCHIKOV Y Y. Forward and reverse modeling of the three-dimensional viscous Rayleigh-Taylor instability [J]. Geophysical Research Letters, 2001, 28(6): 1095–1098. doi: 10.1029/2000GL011789
    [14]
    MOLNAR P, HOUSEMAN G A, CONRAD C P. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer [J]. Geophysical Journal International, 1998, 133(3): 568–584. doi: 10.1046/j.1365-246X.1998.00510.x
    [15]
    MILES J W. Taylor instability of a flat plate, General atomic division of general dynamics: GAMD-7335 [R]. 1966.
    [16]
    WHITE G N. A one degree of freedom model for the Tayloy instability of an ideally plastic metal plate: LA-5225-MS [R]. Los Alamos, NM: Los Alamos National Laboratory, 1973.
    [17]
    ROBINSON A C, SWEGLE J W. Acceleration instability in elastic-plastic solids. II. analytical techniques [J]. Journal of Applied Physics, 1989, 66(7): 2859–2872. doi: 10.1063/1.344191
    [18]
    PIRIZ A R, CELA J J L, CORTAZAR O D, et al. Rayleigh-Taylor instability in elastic solids [J]. Physical Review E, 2005, 72(5): 056313. doi: 10.1103/PhysRevE.72.056313
    [19]
    PIRIZ A R, LÓPEZ CELA J J, TAHIR N A. Rayleigh-Taylor instability in elastic-plastic solids [J]. Journal of Applied Physics, 2009, 105(11): 116101. doi: 10.1063/1.3139267
    [20]
    PIRIZ A R, CELA J J L, TAHIR N A. Linear analysis of incompressible Rayleigh-Taylor instability in solids [J]. Physical Review E, 2009, 80(4): 046305. doi: 10.1103/PhysRevE.80.046305
    [21]
    BAI X B, WANG T, ZHU Y X, et al. Expansion of linear analysis of Rayleigh-Taylor interface instability of metal materials [J]. World Journal of Mechanics, 2018, 8(4): 94–106. doi: 10.4236/wjm.2018.84008
    [22]
    BARNES J F, BLEWETT P J, MCQUEEN R G, et al. Taylor instability in solids [J]. Journal of Applied Physics, 1974, 45(2): 727–732. doi: 10.1063/1.1663310
    [23]
    LORENZ K T, EDWARDS M J, GLENDINNING S G, et al. Accessing ultrahigh-pressure, quasi-isentropic states of matter [J]. Physics of Plasmas, 2005, 12(5): 056309. doi: 10.1063/1.1873812
    [24]
    BARNES J F, JANNEY D H, LONDON R K, et al. Further experimentation on Taylor instability in solids [J]. Journal of Applied Physics, 1980, 51(9): 4678–4679. doi: 10.1063/1.328339
    [25]
    LINDQUIST M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations [R]. Livermore, CA: Lawrence Livermore National Laboratory, 2007.
    [26]
    DE FRAHAN M T H, BELOF J L, CAVALLO R M, et al. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability [J]. Journal of Applied Physics, 2015, 117(22): 225901. doi: 10.1063/1.4922336
    [27]
    WANG T, BAI J S, CAO R Y, et al. Numerical investigations of perturbation growth in aluminum flyer driven by explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032301.
    [28]
    OLSON R T, CERRETA E K, MORRIS C, et al. The effect of microstructure on Rayleigh-Taylor instability growth in solids [J]. Journal of Physics: Conference Series, 2014, 500(11): 112048. doi: 10.1088/1742-6596/500/11/112048
    [29]
    何长江, 周海兵, 杭义洪. 爆轰驱动金属铝界面不稳定性的数值分析 [J]. 中国科学G辑, 2009, 39(9): 1170–1173.

    HE C J, ZHOU H B, HANG Y H. Numerical study on the instability of metal Al driven by detonation [J]. Science in China (Series G), 2009, 39(9): 1170–1173.
    [30]
    郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析 [J]. 爆炸与冲击, 2016, 36(6): 739–744. doi: 10.11883/1001-1455(2016)06-0739-06

    HAO P C, FENG Q J, HU X M. A numerical study of the instability of the metal shell in the implosion [J]. Explosion and Shock Waves, 2016, 36(6): 739–744. doi: 10.11883/1001-1455(2016)06-0739-06
    [31]
    刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究 [J]. 物理学报, 2014, 63(15): 155201. doi: 10.7498/aps.63.155201

    LIU J, FENG Q J, ZHOU H B. Simulation study of interface instability in metals driven by cylindrical implosion [J]. Acta Physica Sinica, 2014, 63(15): 155201. doi: 10.7498/aps.63.155201
    [32]
    SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field [J]. Physics of Plasmas, 2010, 17(5): 056303. doi: 10.1063/1.3333505
    [33]
    MCBRIDE R D, SLUTZ S A, JENNINGS C A, et al. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator [J]. Physical Review Letters, 2012, 109(13): 135004. doi: 10.1103/PhysRevLett.109.135004
    [34]
    PARK H S, ARSENLIS A, BARTON N R. Stabilization of the Rayleigh-Taylor instability by material strength at high pressure and high strain rates [C]//16th International Workshop on the Physics of Compressible Turbulent Mixing. Marseilles, France, 2018.
    [35]
    REMINGTON B A, PARK H S, PRISBREY S T, et al. Progress towards materials science above 1 000 GPa (10 Mbar) on the NIF laser: LLNL-CONF-411555 [R]. Livermore, CA: Lawrence Livermore National Laboratory, 2009.
    [36]
    JENSEN B J, CHERNE F J, PRIME M B, et al. Jet formation in cerium metal to examine material strength [J]. Journal of Applied Physics, 2015, 118(19): 195903. doi: 10.1063/1.4935879
    [37]
    BELOF J L, CAVALLO R M, OLSON R T, et al. Rayleigh-Taylor strength experiments of the pressure-induced α→ε→α′ phase transition in iron [C]//AIP Conference Proceedings. American Institute of Physics, 2012, 1426(1): 1521–1524.
    [38]
    LINDQUIST M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations [C]//LEGRAND M, VANDENBOOMGAERDE M. 10th International Workshop on Physics of Compressible Turbulent Mixing. Paris, France, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(8426) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return