Volume 34 Issue 2
Apr 2020
Turn off MathJax
Article Contents
WANG Guangyong, CAO Ansheng, YU Rui, LIN Jiajian. Dynamic Response of Anchorage Chamber under Simultaneous Explosion Load from Top and Side of Arch[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025202. doi: 10.11858/gywlxb.20190812
Citation: WANG Guangyong, CAO Ansheng, YU Rui, LIN Jiajian. Dynamic Response of Anchorage Chamber under Simultaneous Explosion Load from Top and Side of Arch[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025202. doi: 10.11858/gywlxb.20190812

Dynamic Response of Anchorage Chamber under Simultaneous Explosion Load from Top and Side of Arch

doi: 10.11858/gywlxb.20190812
  • Received Date: 16 Jul 2019
  • Rev Recd Date: 03 Sep 2019
  • Issue Publish Date: 25 Nov 2019
  • Based on the similar model test, the stress wave propagation rule, crack formation mechanism and displacement distribution characteristics of rock mass in the underground anchorage chamber under the simultaneous explosion of concentrated explosive source at top and side of arch are studied by explicit nonlinear dynamic analysis program LS-DYNA3D. By comparing and analyzing the compressive stress time-history curves of the experimental and calculation model, it is found that the simulation results are consistent with the experimental results and conform to the stress wave propagation law, which indicates that the numerical simulation results are reliable. Under explosion of the source, the stress wave propagates to the surrounding rock mass in a circular way. When the stress wave is transmitted to the free surface, it will be reflected and form the stretching wave, which forms the phenomenon of “spalling crack” under the ground and above the tunnel. There are cracks extending along the radial direction of the chamber at the middle point of the explosion source on the top and side of arch. The bolt can play a role in strengthening the rock mass. The distribution of cracks in the anchorage chamber is less than that in the unanchored chamber. The displacement peak value of the surrounding rock at the radial axes of the two blasting sources is the largest and most easily destroyed.

     

  • loading
  • [1]
    何晶. 钱七虎:铸就中国坚不可摧的“地下钢铁长城” [J]. 中国报道, 2019(2): 60–61.

    HE J. QIAN Qihu:Casting Chinese indestructible “Underground Great Wall of Steel” [J]. China Report, 2019(2): 60–61.
    [2]
    顾金才, 陈安敏, 徐景茂, 等. 在爆炸荷载条件下锚固洞室破坏形态对比试验研究 [J]. 岩石力学与工程学报, 2008, 27(7): 1315–1320. doi: 10.3321/j.issn:1000-6915.2008.07.003

    GU J C, CHEN A M, XU J M, et al. Model test study of failure patterns of anchored tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1315–1320. doi: 10.3321/j.issn:1000-6915.2008.07.003
    [3]
    张向阳, 顾金才, 沈俊, 等. 爆炸荷载作用下洞室变形与锚杆受力分析 [J]. 地下空间与工程学报, 2012, 8(4): 678–684.

    ZHANG X Y, GU J C, SHEN J, et al. Tunnel deformation and bolt bearing state under explosion load [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(4): 678–684.
    [4]
    杨自友. 锚固洞室的抗爆性能研究 [D]. 合肥: 中国科学技术大学, 2008: 5–8.

    YANG Z Y. Study on the anti-detonating characteristics of underground opening reinforced by rockbolts [D]. Hefei: University of Science and Technology of China, 2008: 5–8.
    [5]
    余永强, 顾金才, 杨小林, 等. 动载下洞室加固锚杆受力的实验研究 [J]. 兵工学报, 2009, 30(Suppl 2): 263–266.

    YU Y Q, GU J C, YANG X L, et al. Experimental study on applied force of reinforcement cavity rock bolts under dynamic loading conditions [J]. Acta Armamentarii, 2009, 30(Suppl 2): 263–266.
    [6]
    马海春. 锚固洞室抗爆能力现场实验研究 [D]. 合肥: 中国科学技术大学, 2011: 25–32.

    MA H C. Research on explosion resistinhg capacity site tests of underground cavern reinforced by grouted rockbolts [D]. Hefei: University of Science and Technology of China, 2011: 25–32.
    [7]
    徐景茂, 顾金才, 陈安敏, 等. 拱脚局部加长锚杆锚固洞室抗爆模型试验研究 [J]. 岩石力学与工程学报, 2012, 31(11): 2182–2186. doi: 10.3969/j.issn.1000-6915.2012.11.005

    XU J M, GU J C, CHEN A M, et al. Model test study of anti-explosion capacity of anchored tunnel with local lengthening anchors in arch springing [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2182–2186. doi: 10.3969/j.issn.1000-6915.2012.11.005
    [8]
    徐干成, 袁伟泽, 顾金才, 等. 地下洞库围岩外加固抗炸弹爆炸性能研究 [J]. 岩石力学与工程学报, 2015, 34(9): 1767–1776.

    XU G C, YUAN W Z, GU J C, et al. Explosive resistivity of anchored cavern surface rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1767–1776.
    [9]
    王光勇, 顾金才, 陈安敏, 等. 拱顶端部加密锚杆支护洞室抗爆加固效果模型试验研究 [J]. 岩土工程学报, 2009, 31(3): 378–383. doi: 10.3321/j.issn:1000-4548.2009.03.012

    WANG G Y, GU J C, CHEN A M, et al. Model tests on anti-explosion anchoring effect of tunnels reinforced by dense bolts at arch top [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 378–383. doi: 10.3321/j.issn:1000-4548.2009.03.012
    [10]
    单仁亮, 周纪军, 夏宇, 等. 爆炸荷载下锚杆动态响应试验研究 [J]. 岩石力学与工程学报, 2011, 30(8): 1540–1546.

    SHAN R L, ZHOU J J, XIA Y, et al. Experimental investigation on dynamic response of rockbolt under blasting load [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1540–1546.
    [11]
    王正义, 窦林名, 王桂峰. 动载作用下圆形巷道锚杆支护结构破坏机理研究 [J]. 岩土工程学报, 2015, 37(10): 1901–1909. doi: 10.11779/CJGE201510019

    WANG Z Y, DOU L M, WANG G F. Failure mechanism of anchored bolt supporting structure of circular roadway under dynamic load [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1901–1909. doi: 10.11779/CJGE201510019
    [12]
    吴拥政, 陈金宇, 焦建康, 等. 冲击载荷作用下锚固围岩损伤破坏机制 [J]. 煤炭学报, 2018, 43(9): 2389–2397.

    WU Y Z, CHEN J Y, JIAO J K, et al. Damage and failure mechanism of anchored surrounding rock with impact loading [J]. Journal of China Coal Society, 2018, 43(9): 2389–2397.
    [13]
    RAJMENY K, SINGHB U K, SINHA B K P. Predicting rock failure around boreholes and drives adjacent to stopes in Indian mines in high stress regions [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(2): 151–164.
    [14]
    SINGH P K. Blast vibration damage to underground coal mines from adjacent open-pit blasting [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(8): 959–973.
    [15]
    HAGEDORN H. Dynamic rock bolt test and UDEC simulation for a large carven under shock load [C]//Proceeding of International UDEC/3DEC Symposium on Numerical Modeling of Discrete Materialsin Geotechnical Engineering, Civil Engineering, and Earth Sciences. Bochum, Germany, 2004: 191–197.
    [16]
    YUGO N, SHIN W. Analysis of blasting damage in adjacent mining excavations [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(3): 282–290. doi: 10.1016/j.jrmge.2014.12.005
    [17]
    DENG X F, ZHU J B, CHEN S G, et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses [J]. Tunnelling and Underground Space Technology, 2014, 43(6): 88–100.
    [18]
    王光勇. 提高锚固洞室抗爆能力技术措施研究 [D]. 合肥: 中国科学技术大学, 2009: 92–93.

    WANG G Y. Technic study on enhancing the explosion resisting capacity of underground opening reinforced by rockbolts [D]. Hefei: University of Science and Technology of China, 2009: 92–93.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(8115) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return