Citation: | WEN Xinzhu, PENG Yuyan, LIU Mingzhen. First-Principles Study on Structural Stability of Perovskite ZrBeO3[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011202. doi: 10.11858/gywlxb.20190802 |
[1] |
IKEGAMI K, LU M, OHON R, et al. Nonlinear electrical properties of thin films of a light-emitting perovskite type oxide Pr0.002(Ca0.6Sr0.4)0.997TiO3 [J]. Procedia Engineering, 2012, 36: 388–395. doi: 10.1016/j.proeng.2012.03.057
|
[2] |
TAKASHIMA H, SHIMADA K, MIURA N, et al. Low-driving-voltage electroluminescence in perovskite films [J]. Advanced Materials, 2009, 21(36): 3699–3702. doi: 10.1002/adma.200900524
|
[3] |
SAHA S, SINHA T P, MOOKERJEE A. Electric structure, chemical bonding, and optical properties of paraelectric BaTiO3 [J]. Physical Review B, 2000, 62(13): 699–702.
|
[4] |
赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展 [J]. 物理学报, 2018, 67(15): 60–72.
ZHAO G D, YANG Y L, REN W. Progress in unconventional ferroelectricity of perovskite-type oxides [J]. Acta Physica Sinica, 2018, 67(15): 60–72.
|
[5] |
PARK S Y, KUMAR A, RABE K. Carbon fibers from polyacrylonitrile/cellulose [J]. 2016 APS Meeting, 2016, 6(17): 160–172.
|
[6] |
FENNIE C J. Ferroelectrically induced weak ferromagnetism by design [J]. Physical Review Letters, 2008, 100(16): 167203. doi: 10.1103/PhysRevLett.100.167203
|
[7] |
DOLAN D H, AO T. Cubic zirconia as a dynamic compression window [J]. Applied Physics Letters, 2008, 93(2): 021908. doi: 10.1063/1.2957996
|
[8] |
RESTANI R, MARTIN M, KIVEL N, et al. Analytical investigations of irradiated inert matrix fuel [J]. Journal of Nuclear Materials, 2009, 385(2): 435–442. doi: 10.1016/j.jnucmat.2008.12.030
|
[9] |
CONRADSON S D, DEGUELDRE C A, ESPINOSA-FALLER F J, et al. Complex behavior in quaternary zirconias for inert matrix fuel: what do these materials look like at the nanometer scale? [J]. Progress in Nuclear Energy, 2001, 38(3/4): 221–230.
|
[10] |
WANG S J, ONG C K, XU S Y, et al. Crystalline zirconia oxide on silicon as alternative gate dielectrics [J]. Applied Physics Letters, 2001, 78(11): 1604–1606. doi: 10.1063/1.1354161
|
[11] |
LIN Y S, PUTHENKOVILAKAM R, CHANG J P, et al. Interfacial properties of ZrO2 on silicon [J]. Journal of Applied Physics, 2003, 93(10): 5945–5952. doi: 10.1063/1.1563844
|
[12] |
WILK G D, WALLACE R M, ANTHONY J M. High-κ gate dielectrics: current status and materials properties considerations [J]. Journal of Applied Physics, 2001, 89(10): 5243–5275. doi: 10.1063/1.1361065
|
[13] |
MCEVOY A. Thin SOFC electrolytes and their interfacesâ: a near-term research strategy [J]. Solid State Ionics, 2000, 132(3/4): 159–165.
|
[14] |
BILIĆ A T, GALE J D. Ground state structure of BaZrO3: a comparative first-principles study [J]. Physical Review B, 2009, 79(17): 174107. doi: 10.1103/PhysRevB.79.174107
|
[15] |
ZHANG H W, FU X Y, NIU S Y, et al. Synthesis and photoluminescence properties of Eu3+-doped AZrO3 (A = Ca, Sr, Ba) perovskite [J]. Journal of Alloys and Compounds, 2008, 459(1/2): 103–106.
|
[16] |
DUBEY V, TIWARI N. Structural and optical analysis on europium doped AZrO3 (A = Ba, Ca, Sr) phosphor for display devices application [C]//Bikaner, India. Author(s), 2016, 1728(1): 15-32.
|
[17] |
RANDALL C A, BHALLA A S, SHROUT T R, et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order [J]. Journal of Materials Research, 1990, 5(4): 829–834. doi: 10.1557/JMR.1990.0829
|
[18] |
BRADHA M, HUSSAIN S, CHAKRAVARTY S, et al. Total conductivity in Sc-doped LaTiO3+δ perovskites [J]. Ionics, 2014, 20(9): 1343–1350. doi: 10.1007/s11581-014-1216-y
|
[19] |
GEPPERT B, GROENEVELD D, LOBODA V, et al. Finite-element simulations of a thermoelectric generator and their experimental validation [J]. Energy Harvesting and Systems, 2015, 2(1/2): 97–103.
|
[20] |
MUHAMMAD I D, AWANG M, MAMAT O, et al. First-principles calculations of the structural, mechanical and thermodynamics properties of cubic zirconia [J]. World Journal of Nano Science and Engineering, 2014, 4(2): 97–103. doi: 10.4236/wjnse.2014.42013
|
[21] |
BAERENDS E J. Perspective on “Self-consistent equations including exchange and correlation effects” [J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 2000, 103(3/4): 265–269.
|
[22] |
SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301
|
[23] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
|
[24] |
JIA X F, HOU Q Y, XU Z C, et al. Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle [J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 128–135. doi: 10.1016/j.jmmm.2018.05.037
|
[25] |
FISCHER T H, ALMLOF J. General methods for geometry and wave function optimization [J]. The Journal of Physical Chemistry, 1992, 96(24): 9768–9774. doi: 10.1021/j100203a036
|
[26] |
DING Y C, CHEN M, WU W J. Phase stability, elasticity, hardness and the minimum thermal conductivity of Si2N2O polymorphs from first principles calculations [J]. Physica B: Condensed Matter, 2014, 449: 236–245. doi: 10.1016/j.physb.2014.05.042
|
[27] |
GONZE X, BEUKEN J M, CARACAS R, et al. First-principles computation of material properties: the ABINIT software project [J]. Computational Materials Science, 2002, 25(3): 478–492. doi: 10.1016/S0927-0256(02)00325-7
|
[28] |
DING J F, LI X M, CUI L L, et al. Electronic and optical properties of anion-doped c-ZrO2 from first-principles calculations [J]. Journal of Central South University, 2014, 21(7): 2584–2589. doi: 10.1007/s11771-014-2216-9
|
[29] |
BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1955, 23(7): 474.
|
[30] |
WU Z J, HAO X F, LIU X J, et al. Structures and elastic properties of OsN2 investigated via first-principles density functional calculations [J]. Physical Review B, 2007, 75(5): 054115. doi: 10.1103/PhysRevB.75.054115
|
[31] |
ZHAO J J, WINEY J M, GUPTA Y M. First-principles calculations of second-and third-order elastic constants for single crystals of arbitrary symmetry [J]. Physical Review B, 2007, 75(9): 094105. doi: 10.1103/PhysRevB.75.094105
|
[32] |
GAO F M. Theoretical model of intrinsic hardness [J]. Physical Review B, 2006, 73(13): 132104. doi: 10.1103/PhysRevB.73.132104
|
[33] |
FAN C Z, ZENG S Y, LI L X, et al. Potential superhard osmium dinitride with fluorite and pyrite structure: first-principles calculations [J]. Physical Review B, 2006, 74(12): 125118. doi: 10.1103/PhysRevB.74.125118
|
[34] |
丁迎春, 肖冰. 一种超硬新材料BeP2N4的电子结构和力学性质及本征硬度 [J]. 物理化学学报, 2011, 27(7): 1621–1632. doi: 10.3866/PKU.WHXB20110730
DING Y C, XIAO B. Electronic structure, mechanical properties and intrinsic hardness of a new superhard material BeP2N4 [J]. Acta Physico-Chimica Sinica, 2011, 27(7): 1621–1632. doi: 10.3866/PKU.WHXB20110730
|
[35] |
SHARMA A D, SINHA M M. Lattice dynamics of protonic conductors AZrO3 (A = Ba, Sr & Pb): a comparative study [J]. Advanced Materials Research, 2013, 685: 191–194. doi: 10.4028/www.scientific.net/AMR.685.191
|
[36] |
刘哲, 李辉, 赵鹏. Ti5Al2C3与Ti2AlC、Ti3AlC2结构、弹性和电子性质的第一性原理对比研究 [J]. 人工晶体学报, 2019, 48(5): 834–839. doi: 10.3969/j.issn.1000-985X.2019.05.011
LIU Z, LI H, ZHAO P. A first-principles comparative study of the structure, elasticity and electronic properties of Ti5Al2C3, Ti2AlC and Ti3AlC2 [J]. Journal of Artificial Lenses, 2019, 48(5): 834–839. doi: 10.3969/j.issn.1000-985X.2019.05.011
|
[37] |
LAI J, JIA X, WANG D. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers [J]. Nature Communications, 2019, 10(1): 155–167. doi: 10.1038/s41467-018-07819-1
|
[38] |
GULL E, PARCOLLET O, MILLIS A J. Superconductivity and the pseudogap in the two-dimensional Hubbard model [J]. Physical Review Letters, 2013, 110(21): 256–298.
|
[1] | WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776 |
[2] | WANG Yufeng, HAO Long, WU Fengchao, GENG Huayun, LI Jun. Structural Stability and Shock Decomposition of UH3 at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030108. doi: 10.11858/gywlxb.20240709 |
[3] | ZHAO Jinggeng. Crystal Structure and Physica Properties of Perovskite Oxide BaMO3 (M Being Transition Metal)[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050103. doi: 10.11858/gywlxb.20240753 |
[4] | MA Hao, CHEN Ling, JIANG Qiwen, AN Decheng, DUAN Defang. Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791 |
[5] | CHEN Weishan, TAN Yi, TAN Dayong, XIAO Wansheng. First-Principles Theoretical Study on the Structure Behaviors of NaPO3 under Compression[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755 |
[6] | FA Zhixiang, WANG Wendan, LI Ao, YU Shaonan, WANG Liping. Compression Behavior of Tetragonal PbTeO3 Crystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 011102. doi: 10.11858/gywlxb.20220646 |
[7] | SUN Lei, LUO Kun, LIU Bing, HAN Qiaoyi, WANG Xiaoyu, LIANG Zitai, ZHAO Zhisheng. First-Principles Investigations on Metallic Silicon Allotropes[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020103. doi: 10.11858/gywlxb.20190705 |
[8] | LIU Siyuan, MIAO Yu, MA Xuejiao, LI Xin, GAO Wenquan, CHENG Yuheng, LIU Yanhui. Pressure-Induced Phase Transformations of IrSb from First-Principles Calculations[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052203. doi: 10.11858/gywlxb.20190716 |
[9] | YANG Longxing, LIU Lei, LIU Hong, YI Li, GU Xiaoyu. Structure and Elasticity of Garnet under High Pressure by First-Principles Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060104. doi: 10.11858/gywlxb.20190785 |
[10] | LI Xiaoyang, LU Yang, YAN Hao. Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571 |
[11] | ZHANG Yilong, CUI Man'ai, LIU Yanhui. Crystal Structure and Stability of LiAlH4 from First Principles[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021103. doi: 10.11858/gywlxb.20170561 |
[12] | HAN Lin, MA Mai-Ning, XU Zhi-Shuang, ZHOU Xiao-Ya. Structural Properties and Phase Transition of Pyroxene Polymorphs from First-Principles[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 125-134. doi: 10.11858/gywlxb.2017.02.004 |
[13] | DENG Li, LIU Hong, TIAN Hua, DU Jian-Guo, LIU Lei. First-Principles Molecular Dynamics Study of the Structure of MgSiO3 Melt at High Temperatures and High Pressures[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 273-282. doi: 10.11858/gywlxb.2014.03.003 |
[14] | TAN Xin, JIA Yi-Chao, LIU Xue-Jie. First-Principles Investigations on Phase Transition of ZrN under External Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 168-174. doi: 10.11858/gywlxb.2014.02.006 |
[15] | DING Ying-Chun, LIU Hai-Jun, JIANG Meng-Heng, CHEN Min, CHEN Yong-Ming. First-Principles Investigations on Structural Transformation and Electronic Properties of BeP2N4 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 674-680. doi: 10.11858/gywlxb.2012.06.012 |
[16] | LI Sheng-Zhi, LIU Jin-Chao, YANG Xiang-Dong, JIANG De-Qiong. First-Principles Study of Al, N Codoped p-Type ZnS[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 519-525. doi: 10.11858/gywlxb.2011.06.007 |
[17] | LI Sheng-Zhi, LIU Jin-Chao, YANG Xiang-Dong, GUO Yan-Feng, XU Hai-Quan. First-Principles Calculation of ZnS Doped with Mn or Fe[J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 449-454 . doi: 10.11858/gywlxb.2010.06.008 |
[18] | HAO Jun-Hua, WU Zhi-Qiang, WANG Zheng, JIN Qing-Hua, LI Bao-Hui, DING Da-Tong. First Principles Calculation of SiO2 at High Pressures[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 260-266 . doi: 10.11858/gywlxb.2010.04.004 |
[19] | SONG Gong-Bao, LIANG Jing-Kui, RAO Guang-Hui. Subsolidus Phase Relation and Crystal Structure in the Pr1-xBa2-yCax+yCu3O7 System[J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 309-314 . doi: 10.11858/gywlxb.2004.04.004 |
[20] | ZHAO Ting-He, YAN Xue-Wei, CUI Shuo-Jing, CHEN Jiu-Hua, LIU Li-Jun, NIU Wei, ZHAO Wei. Synthesis of Jadeite Jewel and Its Thermal Behavior and Stability[J]. Chinese Journal of High Pressure Physics, 1992, 6(4): 291-296 . doi: 10.11858/gywlxb.1992.04.008 |