Volume 34 Issue 2
Apr 2020
Turn off MathJax
Article Contents
WANG Zihao, ZHENG Hang, WEN Heming. Determination of the Mechanical Properties of Metals at Very High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024102. doi: 10.11858/gywlxb.20190794
Citation: WANG Zihao, ZHENG Hang, WEN Heming. Determination of the Mechanical Properties of Metals at Very High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024102. doi: 10.11858/gywlxb.20190794

Determination of the Mechanical Properties of Metals at Very High Strain Rates

doi: 10.11858/gywlxb.20190794
  • Received Date: 19 Jun 2019
  • Rev Recd Date: 25 Jul 2019
  • Metals are widely used in the defense industry and civil engineering and an understanding of the mechanical properties of metals under intense dynamic loadings is of great significance for the design and assessment of weapons and protective structures. In this paper, the dynamic yield strengths (HELs) of 93 tungsten alloy and 921A steel at very high strain rates are determined by plate impact tests using a two-stage light gas gun system. The paper consists of three parts: firstly, the basic principle of the plate impact experiment is briefly introduced; secondly, the experimental data is analyzed in some details; finally, the dynamic yield strengths of 93 tungsten alloy and 921A steel at very high strain rates are determined. The experimental results show that the dynamic yield strengths of 93 tungsten alloy at strain rates of 1.7 × 105 s−1 and 3.1 × 105 s−1 are 2.10 GPa and 2.78 GPa respectively and the dynamic yield strengths of 921A steel at strain rates of 3.6 × 105 s−1, 4.7 × 105 s−1 and 6.2 × 105 s−1 are 2.08 GPa, 2.67 GPa and 3.15 GPa, respectively. The experimental results also show that the dynamic increase factors for 93 tungsten alloy and 921A steel at very high strain rates are between 2 and 3.

     

  • loading
  • [1]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541–547.
    [2]
    周琳,王子豪,文鹤鸣. 简论金属材料JC本构模型的精确性 [J]. 高压物理学报, 2019, 33(4): 042101.

    ZHOU L, WANG Z H, WEN H M. On the accuracy of the Johnson-Cook constitutive model for metals [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101.
    [3]
    STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
    [4]
    ASAY J R, LIPKIN J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material [J]. Journal of Applied Physics, 1978, 49(7): 4242–4247. doi: 10.1063/1.325340
    [5]
    ASAY J R, CHHABILDAS L C, DANDEKAR D P. Shear strength of shock-loaded polycrystalline tungsten [J]. Journal of Applied Physics, 1980, 51(9): 4774–4783. doi: 10.1063/1.328309
    [6]
    CHHABILDAS L C, ASAY J R, BARKER L M. Shear strength of tungsten under shock and quasi-isentropic loading to 250 GPa:SAND-88-0306 [R].Sandia National Laboratories,1988.
    [7]
    陈青山, 苗应刚, 郭亚洲, 等. 比较93钨合金材料的3种本构模型 [J]. 高压物理学报, 2017, 31(6): 753–760. doi: 10.11858/gywlxb.2017.06.010

    CHEN Q S, MIAO Y G, GUO Y Z, et al. Comparative analysis of 3 constitutive models for 93 tungsten alloy [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 753–760. doi: 10.11858/gywlxb.2017.06.010
    [8]
    朱锡. 921A钢动态屈服应力的实验研究 [J]. 海军工程学院学报, 1991(2): 43–48.

    ZHU X. Experimental study of dynamic yielding stress on “921A” steel [J]. Journal of Naval University of Engineering, 1991(2): 43–48.
    [9]
    张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305–310. doi: 10.3969/j.issn.1000-5773.2003.04.011

    ZHANG L, ZHANG Z G, QIN X Y, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305–310. doi: 10.3969/j.issn.1000-5773.2003.04.011
    [10]
    HU J, ZHOU X, TAN H, et al. Successive phase transitions of tin under shock compression [J]. Applied Physics Letters, 2008, 92(11): 111905. doi: 10.1063/1.2898891
    [11]
    谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007.
    [12]
    谭华. 高压声速测量与卸载路径 [J]. 爆轰波与冲击波, 2003, 2: 60–70.
    [13]
    王贵林, 王治, 张朝辉, 等. 磁驱动准等熵压缩下单晶氟化锂的光学特性 [J]. 强激光与粒子束, 2014, 26(4): 210–216.

    WANG G L, WANG Z, ZHANG Z H, et al. Optical properties of single-crystal lithium fluoride window under magnetically driven quasi-isentropic compression [J]. High Power Laser and Particle Beams, 2014, 26(4): 210–216.
    [14]
    MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980.
    [15]
    华劲松. 高温高压下钨合金的本构方程研究 [D]. 绵阳: 中国工程物理研究院, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(7490) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return