Volume 33 Issue 6
Nov 2019
Turn off MathJax
Article Contents
MAN Lianjie, YUAN Hongsheng, QIN Liping, ZHANG Li. Effects of Carbon on (Mg,Fe)SiO3 Bridgmanite under the Lower Mantle Pressure-Temperature Conditions[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060102. doi: 10.11858/gywlxb.20190788
Citation: MAN Lianjie, YUAN Hongsheng, QIN Liping, ZHANG Li. Effects of Carbon on (Mg,Fe)SiO3 Bridgmanite under the Lower Mantle Pressure-Temperature Conditions[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060102. doi: 10.11858/gywlxb.20190788

Effects of Carbon on (Mg,Fe)SiO3 Bridgmanite under the Lower Mantle Pressure-Temperature Conditions

doi: 10.11858/gywlxb.20190788
  • Received Date: 04 Jun 2019
  • Rev Recd Date: 24 Jul 2019
  • In this study we investigated the interaction of carbon with iron in the (Mg,Fe)SiO3 bridgmanite under the conditions corresponding to the Earth’s lower mantle (36–88 GPa, 1 850–2 800 K) using a laser-heated diamond anvil cell. Synchrotron X-ray diffraction measurements of the run products showed that Fe2+ in bridgmanite can be reduced to metallic Fe by carbon under the pressure and temperature conditions higher than 42 GPa and 2 000 K. The coexisting metallic Fe and Fe-depleted bridgmanite in the run products suggests that the CCO buffer produces lower oxygen fugacity than the of Fe-FeO (IW) buffer, which is further confirmed by the thermodynamic calculation. The experimental results in this study could provide a potential explanation for the presence of redox heterogeneities and highly reducing regions in the deep mantle.

     

  • loading
  • [1]
    FROST D J, MCCAMMON C A. The redox state of Earth’s mantle [J]. Annual Review of Earth and Planetary Sciences, 2008, 36(1): 389–420. doi: 10.1146/annurev.earth.36.031207.124322
    [2]
    STAGNO V, FROST D J. Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages [J]. Earth and Planetary Science Letters, 2010, 300(1/2): 72–84.
    [3]
    LITASOV K D, SHATSKIY A. Carbon-bearing magmas in the Earth’s deep interior [M]//Magmas Under Pressure. Amsterdam: Elsevier, 2018: 43–82.
    [4]
    DASGUPTA R, HIRSCHMANN M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide [J]. Nature, 2015, 440(7084): 659–662.
    [5]
    ROHRBACH A, SCHMIDT M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling [J]. Nature, 2011, 472(7342): 209–212. doi: 10.1038/nature09899
    [6]
    DASGUPTA R, HIRSCHMANN M M. The deep carbon cycle and melting in Earth’s interior [J]. Earth & Planetary Science Letters, 2010, 298(1/2): 1–13.
    [7]
    SAAL A E, HAURI E H, LANGMUIR C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle [J]. Nature, 2002, 419(6906): 451–455. doi: 10.1038/nature01073
    [8]
    HIRSCHMANN M M, DASGUPTA R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles [J]. Chemical Geology, 2009, 262(1/2): 4–16.
    [9]
    DASGUPTA R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 183–229. doi: 10.2138/rmg.2013.75.7
    [10]
    HAZEN R M, DOWNS R T, JONES A P, et al. Carbon mineralogy and crystal chemistry [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 7–46. doi: 10.2138/rmg.2013.75.2
    [11]
    LEUNG I S. Silicon carbide cluster entrapped in a diamond from Fuxian, China [J]. American Mineralogist, 1990, 75(9/10): 1110–1119.
    [12]
    SCHRAUDER M, NAVON O. Solid carbon dioxide in a natural diamond [J]. Nature, 1993, 365(6441): 42–44. doi: 10.1038/365042a0
    [13]
    KAMINSKY F. Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond [J]. Earth-Science Review, 2012, 110(1/2/3/4): 127–147. doi: 10.1016/j.earscirev.2011.10.005
    [14]
    SMITH E M, SHIREY S B, NESTOLA F, et al. Large gem diamonds from metallic liquid in Earth’s deep mantle [J]. Science, 2016, 354(6318): 1403. doi: 10.1126/science.aal1303
    [15]
    STAGNO V, TANGE Y, MIYAJIMA N, et al. The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity [J]. Geophysical Research Letters, 2011, 38(19): 570–583.
    [16]
    MAEDA F, OHTANI E, KAMADA S, et al. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2 [J]. Scientific Reports, 2017, 7: 40602. doi: 10.1038/srep40602
    [17]
    LI X, ZHANG Z, LIN J F, et al. New high pressure phase of CaCO3 at the topmost lower mantle: Implication for the deep mantle carbon transportation [J]. Geophysical Research Letters, 2018, 45: 1355–1360. doi: 10.1002/2017GL076536
    [18]
    MARTIROSYAN N S, LITASOV K D, LOBANOV S S, et al. The Mg-carbonate-Fe interaction: implication for the fate of subducted carbonates and formation of diamond in the lower mantle [J]. Geoscience Frontiers, 2019, 10(4): 1449–1458. doi: 10.1016/j.gsf.2018.10.003
    [19]
    DORFMAN S M, BADRO J, NABIEI F, et al. Carbonate stability in the reduced lower mantle [J]. Earth and Planetary Science Letters, 2018, 489: 84–91. doi: 10.1016/j.jpgl.2018.02.035
    [20]
    HAMILTON D L. The preparation of silicate compositions by a gelling method [J]. Mineralogical Magazine, 1968, 36(282): 832–838. doi: 10.1180/minmag.1968.036.282.11
    [21]
    YINGWEI F, ANGELE R, MARK F, et al. Toward an internally consistent pressure scale [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9182–9186. doi: 10.1073/pnas.0609013104
    [22]
    CAMPBELL A J, DANIELSON L, RIGHTER K, et al. High pressure effects on the iron-iron oxide and nickel-nickel oxide oxygen fugacity buffers [J]. Earth and Planetary Science Letters, 2009, 286(3/4): 556–564.
    [23]
    MENG Y, HRUBIAK R, ROD E, et al. New developments in laser-heated diamond anvil cell with in situ synchrotron X-ray diffraction at High Pressure Collaborative Access Team [J]. Review of Scientific Instruments, 2015, 86(7): 072201. doi: 10.1063/1.4926895
    [24]
    PRAKAPENKA V B, KUBO A, KUZNETSOV A, et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium [J]. High Pressure Research, 2008, 28(3): 225–235. doi: 10.1080/08957950802050718
    [25]
    HOLLAND T J B, REDFERN S A T. Unit cell refinement from powder diffraction data: the use of regression diagnostics [J]. Mineralogical Magazine, 1997, 61(404): 65–77. doi: 10.1180/minmag.1997.061.404.07
    [26]
    BOFFA-BALLARAN T, KURNOSOV A, GLAZYRIN K, et al. Effect of chemistry on the compressibility of silicate perovskite in the lower mantle [J]. Earth and Planetary Science Letters, 2012, 333/334: 181–190. doi: 10.1016/j.jpgl.2012.03.029
    [27]
    DORFMAN S M, MENG Y, PRAKAPENKA V B, et al. Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite [J]. Earth and Planetary Science Letters, 2013, 361(1): 249–257.
    [28]
    KUDOH Y, PREWITT C T, FINGER L W, et al. Effect of iron on the crystal structure of (Mg,Fe)SiO3 perovskite [J]. Geophysical Research Letters, 1990, 17(10): 1481–1484. doi: 10.1029/GL017i010p01481
    [29]
    FEI Y, WANG Y, FINGER L W. Maximum solubility of FeO in (Mg, Fe)SiO3-perovskite as a function of temperature at 26 GPa: implication for FeO content in the lower mantle [J]. Journal of Geophysical Research Solid Earth, 1996, 101(B5): 11525–11530. doi: 10.1029/96JB00408
    [30]
    LUNDIN S, CATALLI K, J. SANTILLÁN, et al. Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar [J]. Physics of the Earth and Planetary Interiors, 2008, 168(1): 97–102.
    [31]
    ITO E, YAMADA H. Stability relations of silicate spinels, ilmenites, and perovskites [M]//High Pressure Research in Geophysics. Tokyo: Center for Publication, 1982: 405-419.
    [32]
    MAO H K, HEMLEY R J, FEI Y, et al. Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg)SiO3-perovskites to 30 GPa [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B5).
    [33]
    WANG Y, WEIDENER D J, LIEBERMANN R C, et al. P-V-T equation of state of (Mg, Fe)SiO3 perovskite: constraints on composition of the lower mantle [J]. Physics of the Earth and Planetary Interiors, 1996, 83(1): 13–40.
    [34]
    FIQUET G, ANDRAULT D, DEWAELE A, et al. P-V-T, equation of state of MgSiO3, perovskite [J]. Physics of the Earth & Planetary Interiors, 1998, 105(1/2): 21–31.
    [35]
    TANGE Y, TAKAHASHI E, NISHIHARA Y, et al. Phase relations in the system MgO-FeO-SiO2 to 50 GPa and 2 000 ℃: an application of experimental techniques using multianvil apparatus with sintered diamond anvils [J]. Journal of Geophysical Research Solid Earth, 2009, 114(B2): 1–14.
    [36]
    ANDRAULT D, BOLFAN-CASANOVA N, GUIGNOT N. Equation of state of lower mantle (Al,Fe)-MgSiO3 perovskite [J]. Earth and Planetary Science Letters, 2001, 193(3/4): 501–508.
    [37]
    FROST D J, LIEBSKE C, LANGENHORST F, et al. Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle [J]. Nature, 2004, 428(6981): 409–412. doi: 10.1038/nature02413
    [38]
    MCCAMMON C A. The crystal chemistry of ferric iron in Fe0.05Mg0.95SiO3 perovskite as determined by Mössbauer spectroscopy in the temperature range 80–293 K [J]. Physics & Chemistry of Minerals, 1998, 25(4): 292–300.
    [39]
    MCCAMMON C A, LAUTERBACH S, SEIFERT F, et al. Iron oxidation state in lower mantle mineral assemblages: I. empirical relations derived from high-pressure experiments [J]. Earth and Planetary Science Letters, 2004, 222(2): 435–449. doi: 10.1016/j.jpgl.2004.03.018
    [40]
    IOTA V, YOO C S, CYNN H. Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures [J]. Science, 1999, 283(5407): 1510–1513. doi: 10.1126/science.283.5407.1510
    [41]
    TSCHAUNER O, MAO H K, HEMLEY R J. New Transformations of CO2 at high pressures and temperatures [J]. Physical Review Letters, 2001, 87(7): 075701. doi: 10.1103/PhysRevLett.87.075701
    [42]
    LITASOV K D, GONCHAROV A F, HEMLEY R J. Crossover from melting to dissociation of CO2 under pressure: implications for the lower mantle [J]. Earth & Planetary Science Letters, 2011, 309(3/4): 318–323.
    [43]
    BOATES B, TEWELDEBERHAN A M, BONEV S A. Stability of dense liquid carbon dioxide [J]. Proceedings of the National Academy of Sciences, 2012, 109(37): 14808–14812. doi: 10.1073/pnas.1120243109
    [44]
    TEWELDEBERHAN A M, BOATES B, BONEV S A. CO2 in the mantle: melting and solid–solid phase boundaries [J]. Earth and Planetary Science Letters, 2013, 373: 228–232. doi: 10.1016/j.jpgl.2013.05.008
    [45]
    DZIUBEK K F, MARTIN E, DEMETRIO S, et al. Crystalline polymeric carbon dioxide stable at megabar pressures [J]. Nature Communications, 2018, 9(1): 3148. doi: 10.1038/s41467-018-05593-8
    [46]
    HOLLAND T J B, POWELL R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids [J]. Journal of Metamorphic Geology, 2011, 29: 333–383. doi: 10.1111/j.1525-1314.2010.00923.x
    [47]
    XU W, LITHGOW-BERTELLONI C, STIXRUDE L, et al. The effect of bulk composition and temperature on mantle seismic structure [J]. Earth and Planetary Science Letters, 2008, 275(1/2): 70–79.
    [48]
    FISCHER R A, CAMPBELL A J, CHIDESTER B A, et al. Equations of state and phase boundary for stishovite and CaCl2-type SiO2 [J]. American Mineralogist, 2018, 103(5): 792–802. doi: 10.2138/am-2018-6267
    [49]
    NAKAJIMA Y, FROST D J, RUBIE D C. Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth’s lower mantle [J]. Journal of Geophysical Research Solid Earth, 2012, 117: B08201.
    [50]
    FROST D J, WOOD B J. Experimental measurements of the fugacity of CO2 and graphite/diamond stability from 35 to 77 kbar at 925 to 1 650 ℃ [J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1565–1574. doi: 10.1016/S0016-7037(97)00035-5
    [51]
    WILDING M C, HARTE B, HARRIS J W. Evidence for a deep origin for Sao Luiz diamonds [C]//Fifth International Kimberlite Conference, 1991.
    [52]
    KLEIN-BENDAVID O, WIRTH R, NAVON O. Micrometer-scale cavities in fibrous and cloudy diamonds: a glance into diamond dissolution events [J]. Earth and Planetary Science Letters, 2007, 264(1/2): 89–103. doi: 10.1016/j.jpgl.2007.09.004
    [53]
    VAN DER HILST R D, WIDIYANTORO S, ENGDAHL E R. Evidence for deep mantle circulation from global tomography [J]. Nature, 1997, 386(6625): 578–584. doi: 10.1038/386578a0
    [54]
    STAGNO V, OJWANG D O, MCCAMMON C A, et al. The oxidation state of the mantle and the extraction of carbon from Earth’s interior [J]. Nature, 2013, 493(7430): 84–88. doi: 10.1038/nature11679
    [55]
    HIROSE K, TAKAFUJI N, SATA N, et al. Phase transition and density of subducted MORB crust in the lower mantle [J]. Earth and Planetary Science Letters, 2005, 237(1/2): 239–251.
    [56]
    HIROSE K, FEI Y, MA Y, et al. The fate of subducted basaltic crust in the Earth’s lower mantle [J]. Nature, 1999, 397(397): 53–56.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views(11187) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return