Volume 33 Issue 3
Jun 2019
Turn off MathJax
Article Contents
SHAO Jianli, HE Anmin, WANG Pei. Brief Review of Research Progress on Numerical Simulation of Ejection Phenomena[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030110. doi: 10.11858/gywlxb.20190786
Citation: SHAO Jianli, HE Anmin, WANG Pei. Brief Review of Research Progress on Numerical Simulation of Ejection Phenomena[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030110. doi: 10.11858/gywlxb.20190786

Brief Review of Research Progress on Numerical Simulation of Ejection Phenomena

doi: 10.11858/gywlxb.20190786
  • Received Date: 28 May 2019
  • Rev Recd Date: 30 May 2019
  • In this paper, the research progress on numerical simulation of ejection phenomena at home and abroad is briefly reviewed and summarized. Firstly, the characteristics of ejection phenomena and its physical connotation are explained. Then, the molecular dynamics studies and continuum mechanics studies on the two main ejection mechanisms, microjet and microspallation, are respectively summarized. At last, some difficult problems in the numerical study of ejection phenomena are summarized. We hope this paper can provide useful reference for related numerical simulation or modeling research.

     

  • loading
  • [1]
    WALSH J M, SHREFFLER R G, WILLIG F J. Limiting conditions for jet formation in high velocity collisions [J]. Journal of Applied Physics, 1953, 24(3): 349–359. doi: 10.1063/1.1721278
    [2]
    ASAY J R, MIX L P, PERRY F C. Ejection of material from shocked surfaces [J]. Applied Physics Letters, 1976, 29(5): 284–287. doi: 10.1063/1.89066
    [3]
    ASAY J R. A model for estimating the effects of surface roughness on mass ejection from shocked materials: SAND78-1256 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1978.
    [4]
    ASAY J R. Material ejection from shock-loaded free surface of aluminum and lead: SAND76-0542 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1976.
    [5]
    朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144

    ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144
    [6]
    FUNG J, HARRISON A K, CHITANVIS S, et al. Ejecta source and transport modeling in the FLAG hydrocode [J]. Computers & Fluids, 2013, 83(16): 177–186.
    [7]
    ANDRIOT P, CHAPRON P, OLIVE F. Ejection of material from shocked surfaces of tin, tantalum and lead-alloys [J]. AIP Conference Proceedings, 1982, 78: 505–509.
    [8]
    曾鉴荣, 庄以河. 动载荷下金属板表面的微物质喷射 [J]. 高压物理学报, 1987, 1(1): 88–92. doi: 10.11858/gywlxb.1987.01.012

    ZENG J R, ZHUANG Y H. Mass ejection from free surface of shock-loaded metallic plates [J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 88–92. doi: 10.11858/gywlxb.1987.01.012
    [9]
    SORENSON D S, MINICH R W, ROMERO J L, et al. Ejecta particle size distributions for shock loaded Sn and Al metals [J]. Journal of Applied Physics, 2002, 92(10): 5830–5836. doi: 10.1063/1.1515125
    [10]
    OGORODNIKOV V A, MIKHAILOV A L, BURTSEV V V, et al. Detecting the ejection of particles from the free surface of a shock-loaded sample [J]. Journal of Experimental and Theoretical Physics, 2009, 109(3): 530–535. doi: 10.1134/S1063776109090180
    [11]
    ZELLNER M B, MCNEIL W V, HAMMERBERG J E, et al. Probing the underlying physics of ejecta production from shocked Sn samples [J]. Journal of Applied Physics, 2008, 103(12): 123502. doi: 10.1063/1.2939253
    [12]
    CHEN Y, HU H, TANG T, et al. Experimental study of ejecta from shock melted lead [J]. Journal of Applied Physics, 2012, 111(5): 053509. doi: 10.1063/1.3692570
    [13]
    MONFARED S K, ORÓ D M, GROVER M, et al. Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection [J]. Journal of Applied Physics, 2014, 116(6): 063504. doi: 10.1063/1.4891449
    [14]
    马云, 汪小松, 李欣竹, 等. ASAY膜法测量微物质喷射总质量不确定度的初步实验研究 [J]. 高压物理学报, 2006, 20(2): 207–210. doi: 10.3969/j.issn.1000-5773.2006.02.016

    MA Y, WANG X S, LI X Z, et al. Study of the uncertainty of the ejected Mass measured by ASAY foil method [J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 207–210. doi: 10.3969/j.issn.1000-5773.2006.02.016
    [15]
    VOGAN W S, ANDERSON W W, GROVER M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces [J]. Journal of Applied Physics, 2005, 98(11): 113508. doi: 10.1063/1.2132521
    [16]
    文雪峰, 王健, 王晓燕, 等. 微喷射物质作用下脉冲信号电探针的放电机理 [J]. 爆炸与冲击, 2017, 37(5): 887–892. doi: 10.11883/1001-1455(2017)05-0887-06

    WEN X F, WANG J, WANG X Y, et al. Discharging mechanism of pulse signal electric probe conducted by micro-jetting [J]. Explosion and Shock Waves, 2017, 37(5): 887–892. doi: 10.11883/1001-1455(2017)05-0887-06
    [17]
    叶雁, 李军, 朱鹏飞, 等. 脉冲X光照相在微物质喷射诊断中的应用 [J]. 高压物理学报, 2013, 27(3): 398–402. doi: 10.11858/gywlxb.2013.03.013

    YE Y, LI J, ZHU P F, et al. Flash X-ray radiography for diagnosing the ejecta from shocked metal surface [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 398–402. doi: 10.11858/gywlxb.2013.03.013
    [18]
    张林, 李英华, 程晋明, 等. 激光驱动X光背光照相技术在金属靶微层裂研究中的应用探索 [J]. 强激光与粒子束, 2016, 28(4): 23–27.

    ZHANG L, LI Y H, CHENG J M, et al. Exploration of laser-driven X-ray backlighting applied in research of micro-spalls of metal target [J]. High Power Laser and Particle Beams, 2016, 28(4): 23–27.
    [19]
    SORENSON D S, PAZUCHANICS P, JOHNSON R P, et al. Ejecta particle-size measurements in vacuum and helium gas using ultraviolet in-line Fraunhofer holography: LA-UR-14-24722 [R]. Los Alamos, NM: Lawrence Livermore National Laboratory, 2014.
    [20]
    叶雁, 汪伟, 李作友, 等. 用高速摄影和脉冲同轴全息照相联合诊断微射流 [J]. 高压物理学报, 2009, 23(6): 471–475. doi: 10.3969/j.issn.1000-5773.2009.06.012

    YE Y, WANG W, LI Z Y, et al. High-speed photography and pulsed in-line holography diagnostics of microjet [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 471–475. doi: 10.3969/j.issn.1000-5773.2009.06.012
    [21]
    汪伟, 李作友, 李欣竹, 等. 用超高速阴影摄影技术研究微喷射现象 [J]. 应用光学, 2008, 29(4): 526–529. doi: 10.3969/j.issn.1002-2082.2008.04.010

    WANG W, LI Z Y, LI X Z, et al. Study on micro-jet on ultra-high speed shadow photography [J]. Journal of Applied Optics, 2008, 29(4): 526–529. doi: 10.3969/j.issn.1002-2082.2008.04.010
    [22]
    BUTTLER W T, ORÓ D M, PRESTON D, et al. The study of high-speed surface dynamics using a pulsed proton beam [J]. AIP Conference Proceedings, 2012, 1426: 999–1002.
    [23]
    HAMMERBERG J E, BUTTLER W T, LLOBET A, et al. Proton radiography measurements and models of ejecta structure in shocked Sn [J]. AIP Conference Proceedings, 2018, 1979: 080006.
    [24]
    ZELLNER M B, VUNNI G B. Photon Doppler velocimetry (PDV) characterization of shaped charge jet formation [J]. Procedia Engineering, 2013, 58: 88–97.
    [25]
    FRANZKOWIAK J E, PRUDHOMME G, MERCIER P, et al. PDV-based estimation of ejecta particles’ mass-velocity function from shock-loaded tin experiment [J]. Review of Scientific Instruments, 2018, 89(3): 033901. doi: 10.1063/1.4997365
    [26]
    DE RESSÉGUIER T, LOISON D, LESCOUTE E, et al. Dynamic fragmentation of laser shock-melted metals: some experimental advances [J]. Journal of Theoretical and Applied Mechanics, 2010, 48: 957–972.
    [27]
    辛建婷, 谷渝秋, 李平, 等. 强激光加载下金属材料微喷回收诊断 [J]. 物理学报, 2012, 61(23): 381–385.

    XIN J T, GU Y Q, LI P, et al. Study on metal ejection under laser shock loading [J]. Acta Physica Sinica, 2012, 61(23): 381–385.
    [28]
    HE W, XIN J, CHU G, et al. Investigation of fragment sizes in laser-driven shock-loaded tin with improved watershed segmentation method [J]. Optics Express, 2014, 22(16): 18924–18933. doi: 10.1364/OE.22.018924
    [29]
    BUTTLER W T, WILLIAMS R J R, NAJJAR F M. Foreword to the special issue on ejecta [J]. Journal of Dynamic Behavior of Materials, 2017, 3(2): 151–155. doi: 10.1007/s40870-017-0120-8
    [30]
    王裴, 何安民, 邵建立, 等. 强冲击作用下金属界面物质喷射与混合问题数值模拟和理论研究 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 106–116.

    WANG P, HE A M, SHAO J L, et al. Numerical and theoretical investigations of shock-induced material ejection and ejecta-gas mixing [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(9): 106–116.
    [31]
    张景琳, 王继海, 杨淑霞. 材料微喷射和动态损伤的分子动力学研究 [J]. 计算物理, 1993, 10(3): 318–324.

    ZHANG J L, WANG J H, YANG S X. Molecular dynamics research of ejection and damage of metals induced by reflection of shock wave at free surface [J]. Chinese Journal of Computational Physics, 1993, 10(3): 318–324.
    [32]
    CHEN J, JING F Q, ZHANG J L, et al. Dynamics simulation of ejection of metal under a shock wave [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 10833. doi: 10.1088/0953-8984/14/44/386
    [33]
    CHEN Q F, CAO X L, ZHANG Y, et al. Parallel molecular dynamics simulations of ejection from the metal Cu and Al under shock loading [J]. Chinese Physics Letters, 2005, 22(12): 3151–3154. doi: 10.1088/0256-307X/22/12/047
    [34]
    HOLIAN B L. Molecular dynamics comes of age for shockwave research [J]. Shock Waves, 2004, 13(6): 489–495.
    [35]
    SHAO J L, WANG P, HE A M, et al. Atomistic simulations of shock-induced microjet from a grooved aluminium surface [J]. Journal of Applied Physics, 2013, 113(15): 153501. doi: 10.1063/1.4801800
    [36]
    DE RESSÉGUIER T, LESCOUTE E, SOLLIER A, et al. Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks [J]. Journal of Applied Physics, 2014, 115(4): 043525. doi: 10.1063/1.4863719
    [37]
    叶建军, 杨健, 郑津洋, 等. 金属材料动态损伤的微观数值模拟 [J]. 江苏大学学报(自然科学版), 2007(1): 41–45.

    YE J J, YANG J, ZHENG J Y, et al. Micro-scale numerical simulation on dynamic damage for metal materials [J]. Journal of Jiangsu University (Natural Science Edition), 2007(1): 41–45.
    [38]
    LI B, ZHAO F P, WU H A, et al. Microstructure effects on shock-induced surface jetting [J]. Journal of Applied Physics, 2014, 115(7): 073504. doi: 10.1063/1.4865798
    [39]
    DURAND O, SOULARD L. A new method for large scale molecular dynamics simulations of shock induced ejecta [J]. AIP Conference Proceedings, 2012, 1426: 1247–1250.
    [40]
    DURAND O, SOULARD L. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions [J]. Journal of Applied Physics, 2013, 114(19): 194902. doi: 10.1063/1.4832758
    [41]
    HE A M, WANG P, SHAO J L, et al. Molecular dynamics simulations of jet breakup and ejecta production from a grooved Cu surface under shock loading [J]. Chinese Physics B, 2014, 23(4): 047102. doi: 10.1088/1674-1056/23/4/047102
    [42]
    HE A M, WANG P, SHAO J L. Molecular dynamics simulations of ejecta size distributions for shock-loaded Cu with a wedged surface groove [J]. Computational Materials Science, 2015, 98: 271–277. doi: 10.1016/j.commatsci.2014.11.020
    [43]
    HE A M, WANG P, SHAO J L. Statistically heterogeneous size distribution of ejecta from shock-loaded Cu with a wedged surface groove [J]. Modelling and Simulation in Materials Science and Engineering, 2016, 24(2): 025002. doi: 10.1088/0965-0393/24/2/025002
    [44]
    WU F C, ZHU Y B, LI X Z, et al. Peculiarities in breakup and transport process of shock-induced ejecta with surrounding gas [J]. Journal of Applied Physics, 2019, 125(18): 185901. doi: 10.1063/1.5086542
    [45]
    REN G, CHEN Y, TANG T, et al. Ejecta production from shocked Pb surface via molecular dynamics [J]. Journal of Applied Physics, 2014, 116(13): 133507. doi: 10.1063/1.4896902
    [46]
    SHAO J L, WANG P, HE A M. Microjetting from a grooved Al surface under supported and unsupported shocks [J]. Journal of Applied Physics, 2014, 116(7): 073501. doi: 10.1063/1.4891733
    [47]
    SHAO J L, WANG P, HE A M. Influence of shock pressure and profile on the microjetting from a grooved Pb surface [J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25(1): 015011. doi: 10.1088/1361-651X/25/1/015011
    [48]
    WU B, WU F C, ZHU Y B, et al. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks [J]. AIP Advances, 2018, 8(4): 045002. doi: 10.1063/1.5021671
    [49]
    SOULARD L. Molecular dynamics study of the micro-spallation [J]. The European Physical Journal D, 2008, 50(3): 241–251. doi: 10.1140/epjd/e2008-00212-2
    [50]
    XIANG M, HU H, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
    [51]
    LIAO Y, XIANG M, ZENG X, et al. Molecular dynamics study of the micro-spallation of single crystal tin [J]. Computational Materials Science, 2014, 95: 89–98. doi: 10.1016/j.commatsci.2014.07.014
    [52]
    SHAO J L, WANG P, HE A M, et al. Molecular dynamics study on the failure modes of aluminium under decaying shock loading [J]. Journal of Applied Physics, 2013, 113(16): 163507. doi: 10.1063/1.4802671
    [53]
    SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. doi: 10.1016/j.mechmat.2019.01.012
    [54]
    王裴, 秦承森, 张树道, 等. SPH方法对金属表面微射流的数值模拟 [J]. 高压物理学报, 2004, 18(2): 149–156. doi: 10.3969/j.issn.1000-5773.2004.02.010

    WANG P, QIN C S, ZHANG S D, et al. Simulated microjet from free surface of aluminum using smoothed particle hydrodynamics [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 149–156. doi: 10.3969/j.issn.1000-5773.2004.02.010
    [55]
    WANG P, LI T, SHAO J L, et al. Effect of wave-front width on micro-jet from a shocked aluminum surface [J]. Procedia Engineering, 2011, 10: 3327–3332.
    [56]
    王裴, 邵建立, 秦承森. 加载波前沿宽度对铝表面微射流的影响 [J]. 物理学报, 2009, 58(12): 1064–1070.

    WANG P, SHAO J L, QIN C S. Effect of loading-wave-front width on micro-jet from aluminum surface [J]. Acta Physica Sinica, 2009, 58(12): 1064–1070.
    [57]
    王裴, 邵建立, 秦承森. 沟槽角度对金属表面微射流性质的影响 [J]. 物理学报, 2012, 61(23): 321–327.

    WANG P, SHAO J L, QIN C S. Groove angle effect on micro-jet from shocked metal surface [J]. Acta Physica Sinica, 2012, 61(23): 321–327.
    [58]
    赵信文, 李欣竹, 王学军, 等. 金属表面几何缺陷微细结构对微喷射特性的影响 [J]. 物理学报, 2015, 64(12): 285–291.

    ZHAO X W, LI X Z, WANG X J, et al. Effects of surface groove micro-structure on ejection from shocked metal surface [J]. Acta Physica Sinica, 2015, 64(12): 285–291.
    [59]
    LIU W B, MA D J, HE A M, et al. Ejecta from periodic grooved Sn surface under unsupported shocks [J]. Chinese Physics B, 2018, 27(1): 016202. doi: 10.1088/1674-1056/27/1/016202
    [60]
    DE RESSÉGUIER T, PRUDHOMME G, ROLAND C, et al. Picosecond x-ray radiography of microjets expanding from laser shock-loaded grooves [J]. Journal of Applied Physics, 2018, 124(6): 065106. doi: 10.1063/1.5040304
    [61]
    KULLBACK B A, TERRONES G, CARRARA M D, et al. Quantification of ejecta from shock loaded metal surfaces [J]. AIP Conference Proceedings, 2012, 1426: 995–998.
    [62]
    刘超, 秦承森, 冯其京, 等. 缺陷形状对铝材料微喷射的影响 [J]. 计算物理, 2016, 26(2): 275–280.

    LIU C, QIN C S, FENG Q J, et al. Effect of groove angle on ejecting mass [J]. Chinese Journal of Computational Physics, 2016, 26(2): 275–280.
    [63]
    刘超, 王裴, 秦承森, 等. 冲击压力及加载速率对沟槽微射流的影响 [J]. 计算物理, 2010, 27(2): 190–194. doi: 10.3969/j.issn.1001-246X.2010.02.005

    LIU C, WANG P, QIN C S, et al. Effect of pressure and shock wave risetime on material ejection [J]. Chinese Journal of Computational Physics, 2010, 27(2): 190–194. doi: 10.3969/j.issn.1001-246X.2010.02.005
    [64]
    DIMONTE G, TERRONES G, CHERNE F J, et al. Ejecta source model based on the nonlinear Richtmyer-Meshkov instability [J]. Journal of Applied Physics, 2013, 113(2): 024905. doi: 10.1063/1.4773575
    [65]
    CHERNE F J, HAMMERBERG J E, ANDREWS M J, et al. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum [J]. Journal of Applied Physics, 2015, 118(18): 185901. doi: 10.1063/1.4934645
    [66]
    DYACHKOV S A, PARSHIKOV A N, ZHAKHOVSKY V V. Shock-produced ejecta from tin: comparative study by molecular dynamics and smoothed particle hydrodynamics methods [J]. Journal of Physics: Conference Series, 2015, 653(1): 012043.
    [67]
    DURAND O, JAOUEN S, SOULARD L, et al. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension [J]. Journal of Applied Physics, 2017, 122(13): 135107. doi: 10.1063/1.4994789
    [68]
    韩长生. 估算冲击加载下材料自由面微射喷射量的一个半经验解析公式 [J]. 高压物理学报, 1989, 3(3): 234–240. doi: 10.11858/gywlxb.1989.03.009

    HAN C S. A semi-empirical equation for estimating the micro-jet ejection from shocked free-surface [J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 234–240. doi: 10.11858/gywlxb.1989.03.009
    [69]
    GEORGIEVSKAYA A B, RAEVSKY V A. Estimation of spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shock wave effect [J]. AIP Conference Proceedings, 2012, 1426: 1007–1010.
    [70]
    HE A M, LIU J, LIU C, et al. Numerical and theoretical investigation of jet formation in elastic-plastic solids [J]. Journal of Applied Physics, 2018, 124(18): 185902. doi: 10.1063/1.5051527
    [71]
    GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
    [72]
    石艺娜, 秦承森. 金属射流失稳断裂的理论分析 [J]. 力学学报, 2009, 41(3): 361–369. doi: 10.3321/j.issn:0459-1879.2009.03.010

    SHI Y N, QIN C S. Instability and breakup of stretching metallic jets [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 361–369. doi: 10.3321/j.issn:0459-1879.2009.03.010
    [73]
    DE RESSÉGUIER T, SIGNOR L, DRAGONR A, et al. Experimental investigation of liquid spall in laser shock-loaded tin [J]. Journal of Applied Physics, 2007, 101(1): 013506. doi: 10.1063/1.2400800
    [74]
    张凤国, 刘军, 王裴, 等. 三角波强加载下延性金属多次层裂破坏问题 [J]. 爆炸与冲击, 2018, 38(3): 659–664. doi: 10.11883/bzycj-2016-0279

    ZHANG F G, LIU J, WANG P, et al. Multi-spall in ductile metal under triangular impulse loading [J]. Explosion and Shock Waves, 2018, 38(3): 659–664. doi: 10.11883/bzycj-2016-0279
    [75]
    DIMONTE G, TERRONES G, CHERNE F J, et al. Use of Richtmyer-Meshkov instability to infer yield stress at high energy densities [J]. Physical Review Letters, 2011, 107(26): 264502. doi: 10.1103/PhysRevLett.107.264502
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article Metrics

    Article views(9000) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return