Citation: | YANG Longxing, LIU Lei, LIU Hong, YI Li, GU Xiaoyu. Structure and Elasticity of Garnet under High Pressure by First-Principles Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060104. doi: 10.11858/gywlxb.20190785 |
[1] |
PALKE A C, STEBBINS J F, GEIGER C A, et al. Cation order-disorder in Fe-bearing pyrope and grossular garnets: a 27Al and 29Si MAS NMR and 57Fe Mossbauer spectroscopy study [J]. American Mineralogist, 2015, 100(2/3): 536–547.
|
[2] |
范大伟, 李博, 陈伟, 等. 石榴子石族矿物状态方程研究进展 [J]. 高压物理学报, 2018, 32(1): 010101. doi: 10.11858/gywlxb.20170597
FAN D W, LI B, CHEN W, et al. Research progress of the equation of state for garnet minerals [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010101. doi: 10.11858/gywlxb.20170597
|
[3] |
FEI Y, BERTKA C M. Phase transitions in the Earth’s mantle and mantle mineralogy [J]. Mantle Petrology: Field Observations and High Pressure Experimentation, 1999, 6: 189–207.
|
[4] |
RINGWOOD A E. Phase transformations and their bearing on the constitution and dynamics of the mantle [J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2083–2110. doi: 10.1016/0016-7037(91)90090-R
|
[5] |
IRIFUNE T, RINGWOOD A E. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle [J]. Earth and Planetary Science Letters, 1993, 117(1/2): 101–110.
|
[6] |
WANG Z, JI S. Elasticity of six polycrystalline silicate garnets at pressure up to 3.0 GPa [J]. American Mineralogist, 2001, 86(10): 1209–1218. doi: 10.2138/am-2001-1009
|
[7] |
CONRAD P G, ZHA C S, MAO H K, et al. The high-pressure, single-crystal elasticity of pyrope, grossular, and andradite [J]. American Mineralogist, 1999, 84(3): 374–383. doi: 10.2138/am-1999-0321
|
[8] |
BABUŠKA V, FIALA J, KUMAZAWA M, et al. Elastic properties of garnet solid-solution series [J]. Physics of the Earth and Planetary Interiors, 1978, 16(2): 157–176. doi: 10.1016/0031-9201(78)90086-9
|
[9] |
ANDERSON O L, NAFE J E. The bulk modulus-volume relationship for oxide compounds and related geophysical problems [J]. Journal of Geophysical Research, 1965, 70(16): 3951–3963. doi: 10.1029/JZ070i016p03951
|
[10] |
ANDERSON D L, ANDERSON O L. The bulk modulus-volume relationship for oxides [J]. Journal of Geophysical Research, 1970, 75(26): 3494–3500.
|
[11] |
HAZEN R M. Crystal structures and compressibilities of pyrope and grossular to 60 kbar [J]. American Mineralogist, 1978, 63(3/4): 297–303.
|
[12] |
LEGER J M, REDON A M, CHATEAU C. Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa [J]. Physics and Chemistry of Minerals, 1990, 17(2): 161–167.
|
[13] |
ZHANG L, AHSBAHS H, KUTOGLU A, et al. Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressures [J]. Physics and Chemistry of Minerals, 1999, 27(1): 52–58. doi: 10.1007/s002690050240
|
[14] |
TAKAHASHI T, LIU L G. Compression of ferromagnesian garnets and the effect of solid solutions on the bulk modulus [J]. Journal of Geophysical Research, 1970, 75(29): 5757–5766. doi: 10.1029/JB075i029p05757
|
[15] |
HUANG S, CHEN J. Equation of state of pyrope–almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction [J]. Physics of the Earth and Planetary Interiors, 2014, 228: 88–91. doi: 10.1016/j.pepi.2014.01.014
|
[16] |
MILANI S, NESTOLA F, ALVARO M, et al. Diamond-garnet geobarometry: the role of garnet compressibility and expansivity [J]. Lithos, 2015, 227: 140–147. doi: 10.1016/j.lithos.2015.03.017
|
[17] |
FAN D, XU J, MA M, et al. P-V-T equation of state of spessartine-almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction [J]. Physics and Chemistry of Minerals, 2015, 42(1): 63–72. doi: 10.1007/s00269-014-0700-2
|
[18] |
MURAKAMI M, SINOGEIKIN S V, LITASOV K, et al. Single-crystal elasticity of iron-bearing majorite to 26 GPa: implications for seismic velocity structure of the mantle transition zone [J]. Earth and Planetary Science Letters, 2008, 274(3/4): 339–345.
|
[19] |
FAN D W, WEI S Y, LIU J, et al. High pressure X-ray diffraction study of a grossular-andradite solid solution and the bulk modulus variation along this solid solution [J]. Chinese Physics Letters, 2011, 28(7): 076101. doi: 10.1088/0256-307X/28/7/076101
|
[20] |
FAN D W, KUANG Y, XU J, et al. Thermoelastic properties of grossular-andradite solid solution at high pressures and temperatures [J]. Physics and Chemistry of Minerals, 2017, 44(2): 137–147. doi: 10.1007/s00269-016-0843-4
|
[21] |
DU W, CLARK S M, WALKER D. Thermo-compression of pyrope-grossular garnet solid solutions: non-linear compositional dependence [J]. American Mineralogist, 2014, 100(1): 215–222.
|
[22] |
GILLAN M J, ALFÈD, BRODHOLT J, et al. First-principles modelling of Earth and planetary materials at high pressures and temperatures [J]. Reports on Progress in Physics, 2006, 69(8): 2365–2441. doi: 10.1088/0034-4885/69/8/R03
|
[23] |
PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-body systems [J]. Physical Review B, 1981, 23(10): 5048–5079. doi: 10.1103/PhysRevB.23.5048
|
[24] |
WENTZCOVITCH R M, MARTINS J L, PRICE G D. Ab initio molecular dynamics with variable cell shape: application to MgSiO3 [J]. Physical Review Letters, 1993, 70(25): 3947–3950. doi: 10.1103/PhysRevLett.70.3947
|
[25] |
DA SILVA C, STIXRUDE L, WENTZCOVITCH R M. Elastic constants and anisotropy of forsterite at high pressure [J]. Geophysical Research Letters, 1997, 24(15): 1963–1966. doi: 10.1029/97GL01756
|
[26] |
KARKI B B, STIXRUDE L, WENTZCOVITCH R M. High-pressure elastic properties of major materials of Earth’s mantle from first principles [J]. Reviews of Geophysics, 2015, 39(4): 507–534.
|
[27] |
LIU L, DU J G, ZHAO J, et al. Elastic properties of hydrous forsterites under high pressure: first-principle calculations [J]. Physics of the Earth and Planetary Interiors, 2009, 176(1): 89–97.
|
[28] |
LIU L, DU J, LIU W, et al. Elastic behavior of (Mg xFe1- x)2SiO4 olivine at high pressure from first-principles simulations [J]. Journal of Physics and Chemistry of Solids, 2010, 71(8): 1094–1097. doi: 10.1016/j.jpcs.2010.03.013
|
[29] |
LIU L, DU J G, LIU H, et al. Differential stress effect on the structural and elastic properties of forsterite by first-principles simulation [J]. Physics of the Earth and Planetary Interiors, 2014, 233: 95–102. doi: 10.1016/j.pepi.2014.06.010
|
[30] |
LIU L, LV C J, ZHUANG C Q, et al. Effects of differential stress on the structure and Raman spectra of calcite from first-principles calculations [J]. American Mineralogist, 2016, 101(8): 1892–1897. doi: 10.2138/am-2016-5558
|
[31] |
CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method [J]. Physical Review Letters, 1980, 45(7): 566–569. doi: 10.1103/PhysRevLett.45.566
|
[32] |
NIELSEN O H, MARTIN, RICHARD M. First-principles calculation of stress [J]. Physical Review Letters, 1983, 50(9): 697–700. doi: 10.1103/PhysRevLett.50.697
|
[33] |
VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
|
[34] |
NIELSEN O H, MARTIN R M. Quantum-mechanical theory of stress and force [J]. Physical Review B, 1985, 32(6): 3780–3791. doi: 10.1103/PhysRevB.32.3780
|
[35] |
马艳梅, 彭刚, 李敏. 镁铝石榴子石的高压X射线衍射研究 [J]. 高压物理学报, 2008, 22(3): 305–308. doi: 10.3969/j.issn.1000-5773.2008.03.014
MA Y M, PENG G, LI M. X-ray diffraction investigation of pyrope under pressure [J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 305–308. doi: 10.3969/j.issn.1000-5773.2008.03.014
|
[36] |
WEBB S L. The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa [J]. Physics and Chemistry of Minerals, 1989, 16(7): 684–692.
|
[37] |
ZOU Y, GRÉAUX S, IRIFUNE T, et al. Thermal equation of state of Mg3Al2Si3O12 pyrope garnet up to 19 GPa and 1700 K [J]. Physics and Chemistry of Minerals, 2012, 39(7): 589–598. doi: 10.1007/s00269-012-0514-z
|
[38] |
HAZEN R M, DOWNS R T, CONRAD P G, et al. Comparative compressibilities of majorite-type garnets [J]. Physics and Chemistry of Minerals, 1994, 21(5): 344–349.
|
[39] |
BASS J D. Elasticity of uvarovite and andradite garnets [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B7): 7505–7516. doi: 10.1029/JB091iB07p07505
|
[40] |
BASS J D. Elasticity of grossular and spessartite garnets by Brillouin spectroscopy [J]. Journal of Geophysical Research, 1989, 94(B6): 7621–7628. doi: 10.1029/JB094iB06p07621
|
[41] |
O’NEILL B, BASS J, R. SMYTH J, et al Elasticity of a grossular-pyrope-almandine garnet [J]. Journal of Geophysical Research Solid Earth, 1989, 94(B12): 17819–17824. doi: 10.1029/JB094iB12p17819
|
[42] |
SATO Y, AKAOGI M, AKIMOTO S I. Hydrostatic compression of the synthetic garnets pyrope and almandine [J]. Journal of Geophysical Research, 1978, 83(B1): 335–338. doi: 10.1029/JB083iB01p00335
|
[43] |
徐光宪, 王祥云. 物质结构[M]. 2版. 北京: 高等教育出版社, 1987: 621–622.
XU G X, WANG X Y. Material structure [M]. 2nd ed. Beijing: Higher Education Press, 1987: 621–622.
|
[44] |
LI L, WEIDNER D J, BRODHOLT J, et al. Ab initio molecular dynamic simulation on the elasticity of Mg3Al2Si3O12 pyrope [J]. Journal of Earth Science, 2011, 22(2): 169–175. doi: 10.1007/s12583-011-0169-6
|