Citation: | ZHANG Hao, YU Jidong, PEI Xiaoyang, PENG Hui, LI Ping, CAI Lingcang, TANG Tiegang. An Overview of Phase Field Approach to Fracture[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030109. doi: 10.11858/gywlxb.20190777 |
[1] |
钱学森. 物理力学讲义[M]. 上海: 上海交通大学出版社, 2007.
|
[2] |
BECKER R. How metals fail [R]. Metal Fracture-Lawrence Livermore Nation Laboratory, 2002: 13–30.
|
[3] |
FAN R, FISH J. The rs-method for material failure simulations [J]. International Journal for Numerical Methods in Engineering, 2008, 73(11): 1607–1623. doi: 10.1002/nme.2134
|
[4] |
HALLQUIST J O. LS-DYNA theoretical manual [M]. USA: Livemore Software Technology Corporation, 1998.
|
[5] |
XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397–1434. doi: 10.1016/0022-5096(94)90003-5
|
[6] |
CAMACHO G T, ORTIZ M. Computational modelling of impact damage in brittle materials [J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 2899–2938.
|
[7] |
BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620. doi: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s
|
[8] |
MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:13.0.CO;2-J
|
[9] |
庄茁, 成斌斌. 发展基于CB壳单元的扩展有限元模拟三维任意扩展裂纹 [J]. 工程力学, 2012, 29(6): 12–21. doi: 10.6052/j.issn.1000-4750.2010.08.0616
ZHUANG Z, CHENG B B. Development of X-FEM on CB shell element for simulating 3D arbitrary crack growth [J]. Engineering Mechanics, 2012, 29(6): 12–21. doi: 10.6052/j.issn.1000-4750.2010.08.0616
|
[10] |
PROVATAS N, ELDER K. Book-phase-field methods in materials science and engineering [M]. Wiley-VCH Press, 2010.
|
[11] |
SONG J H, WANG H, BELYTSCHKO T. A comparative study on finite element methods for dynamic fracture [J]. Computational Mechanics, 2008, 42(2): 239–250. doi: 10.1007/s00466-007-0210-x
|
[12] |
BORDEN M J, VERHOOSEL C V, SCOTT M A, et al. A phase-field description of dynamic brittle fracture [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 217(220): 77–95.
|
[13] |
RAMULU M, KOBAYASHI A S. Mechanics of crack curving and branching-a dynamic fracture analysis [J]. International Journal of Fracture, 1985, 27(3/4): 187–201.
|
[14] |
KALTHOFF J F, WINKLER S. In failure mode transition at high rates of shear loading [C]//Impact Loading and Dynamic Behavioavior of Materials. FRG, 1987: 185–195.
|
[15] |
BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797–826. doi: 10.1016/S0022-5096(99)00028-9
|
[16] |
GIACOMINI A, PONSIGLIONE M. A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications [J]. Archive for Rational Mechanics and Analysis, 2006, 180(3): 399–447. doi: 10.1007/s00205-005-0392-3
|
[17] |
GRAVOUIL A, MOËS N, BELYTSCHKO T. Non-planar 3D crack growth by the extended finite element and level sets-Part II: level set update [J]. International Journal for Numerical Methods in Engineering, 2002, 53(11): 2569–2586. doi: 10.1002/nme.v53:11
|
[18] |
SUKUMAR N, CHOPP D L, BÉCHET E, et al. Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method [J]. International Journal for Numerical Methods in Engineering, 2008, 76(5): 727–748. doi: 10.1002/nme.v76:5
|
[19] |
MIEHE C, SCHÄNZEL L M, ULMER H. Phase field modeling of fracture in multi-physics problems. Part I. balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294(1): 449–485.
|
[20] |
HAKIM V, KARMA A. Laws of crack motion and phase-field models of fracture [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(2): 342–368. doi: 10.1016/j.jmps.2008.10.012
|
[21] |
PONS A J, KARMA A. Helical crack-front instability in mixed-mode fracture [J]. Nature, 2010, 464(7285): 85–89. doi: 10.1038/nature08862
|
[22] |
FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319–1342. doi: 10.1016/S0022-5096(98)00034-9
|
[23] |
SPATSCHEK R, BRENER E, KARMA A. Phase field modeling of crack propagation [J]. Philosophical Magazine, 2011, 91(1): 75–95. doi: 10.1080/14786431003773015
|
[24] |
GRIFFITH A A. The phenomena of rupture and flow in solid [J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1920, 221: 163–198.
|
[25] |
Bourdin B, Francfort G A, Marigo J J. The variational approach to fracture[M]. Springer Science+Business Media B. V., 2008.
|
[26] |
AMOR H, MARIGO J J, MAURINI C. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1209–1229. doi: 10.1016/j.jmps.2009.04.011
|
[27] |
MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations [J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311. doi: 10.1002/nme.v83:10
|
[28] |
MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits [J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199: 2765–2778. doi: 10.1016/j.cma.2010.04.011
|
[29] |
MESGARNEJAD A, BOURDIN B, KHONSARI M M. Validation simulations for the variational approach to fracture [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 290(1): 420–437.
|
[30] |
BOURDIN B, LARSEN C J, RICHARDSON C L. A time-discrete model for dynamic fracture based on crack regularization [J]. International Journal of Fracture, 2011, 168(2): 133–143. doi: 10.1007/s10704-010-9562-x
|
[31] |
LARSEN C J, ORTNER C, SÜLI E. Existence of solutions to a regularized model of dynamic fracture [J]. Mathematical Models and Methods in Applied Sciences, 2010, 20(7): 1021–1048. doi: 10.1142/S0218202510004520
|
[32] |
HOFACKER M, MIEHE C. Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation [J]. International Journal of Fracture, 2012, 178(1): 113–129.
|
[33] |
HOFACKER M, MIEHE C. A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns [J]. International Journal for Numerical Methods in Engineering, 2013, 93(3): 276–301. doi: 10.1002/nme.v93.3
|
[34] |
SCHLÜTER A, WILLENBÜCHER A, KUHN C, et al. Phase field approximation of dynamic brittle fracture [J]. Computational Mechanics, 2014, 54(5): 1141–1161. doi: 10.1007/s00466-014-1045-x
|
[35] |
MIEHE C, MAUTHE S. Phase field modeling of fracture in multi-physics problems. Part III. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304(1): 619–655.
|
[36] |
MIEHE C, HOFACKER M, SCHÄNZEL L M, et al. Phase field modeling of fracture in multi-physics problems. Part II. coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294(1): 486–522.
|
[37] |
WILSON Z A, BORDEN M J, LANDIS C M. A phase-field model for fracture in piezoelectric ceramics [J]. International Journal of Fracture, 2013, 183(2): 135–153. doi: 10.1007/s10704-013-9881-9
|
[38] |
ABDOLLAHI A, ARIAS I. Phase-field modeling of fracture in ferroelectric materials [J]. Archives of Computational Methods in Engineering, 2015, 22(2): 153–181. doi: 10.1007/s11831-014-9118-8
|
[39] |
MIEHE C, SCHÄNZEL L M. Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure [J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 93–113.
|
[40] |
ZIAEI-RAD V, SHEN L, JIANG J, et al. Identifying the crack path for the phase field approach to fracture with non-maximum suppression [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 312(1): 304–321.
|
[41] |
SANTILLÁN D, MOSQUERA J C, CUETO-FELGUEROSO L. Phase-field model for brittle fracture. validation with experimental results and extension to dam engineering problems [J]. Engineering Fracture Mechanics, 2017, 178: 109–125. doi: 10.1016/j.engfracmech.2017.04.020
|
[42] |
DUDA F P, CIARBONETTI A, SÁNCHEZ P J, et al. A phase-field/gradient damage model for brittle fracture in elastic-plastic solids [J]. International Journal of Plasticity, 2015, 65: 269–296. doi: 10.1016/j.ijplas.2014.09.005
|
[43] |
AMBATI M, GERASIMOV T, LORENZIS L D. Phase-field modeling of ductile fracture [J]. Computational Mechanics, 2015, 55(5): 1017–1040. doi: 10.1007/s00466-015-1151-4
|
[44] |
AMBATI M, KRUSE R, LORENZIS L D. A phase-field model for ductile fracture at finite strains and its experimental verification [J]. Computational Mechanics, 2016, 57: 149–167. doi: 10.1007/s00466-015-1225-3
|
[45] |
MCAULIFFE C, WAISMAN H. A coupled phase field shear band model for ductile-brittle transition in notched plate impacts [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 173–195. doi: 10.1016/j.cma.2016.02.018
|
[46] |
柳占立, 李想, 初东阳, 等. 多物理场耦合断裂的相场方法模拟及工程应用[C]//第十二届全国爆炸力学会议. 桐乡, 2018.
|
[1] | CUI Niansheng, WEI Jianlin, YUAN Zengsen, XU Zhenyang, LIU Xin, WANG Xuesong. Simulation Analysis of Mesoscale Characteristics in the Dynamic Fracture Damage of Heterogeneous Rock[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044204. doi: 10.11858/gywlxb.20230638 |
[2] | XIU Chengdong, WANG Changfeng, LI Bing, GUAN Renguo. Numerical Simulation Study on the Influence of Hard Phase Shape on the Fracture Behavior of Ti-Al3Ti Bionic Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044201. doi: 10.11858/gywlxb.20230629 |
[3] | ZHANG Haiguang, WANG Yu, AN Lianhao, WANG Ke, WU Xiaodong. Experimental Study and Numerical Simulation of Dynamic Fracture Behavior of Branch Staggered Laminated Biomimetic Composites under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776 |
[4] | MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827 |
[5] | YAO Pengfei, HAN Yang, YAO Fen, LI Zhiqiang. Simulation of the Impact Fracture Behavior of Double Laminated Glass Based on Intrinsic Cohesive Model[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064105. doi: 10.11858/gywlxb.20190718 |
[6] | YU Yin, LI Yuanyuan, HE Hongliang, WANG Wenqiang. Mesoscale Lattice Model for Dynamic Fracture of Brittle Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030106. doi: 10.11858/gywlxb.20190707 |
[7] | XIAO Jiaxin, BAI Jingsong, WANG Tao. Numerical Study of Shock Wave Impacting on the Double-Mode Interface in Nonuniform Flows[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 012301. doi: 10.11858/gywlxb.20170501 |
[8] | GUO Chun-Hai, ZHANG Wen-Wu, RU Hao-Lei. Numerical Simulation of High Pressure Micro Water Jet Modulation with the Constraint of Gas Flow[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 585-592. doi: 10.11858/gywlxb.2017.05.012 |
[9] | PAN Jian-Hua, CHEN Xue-Dong. Numerical Simulation of Dynamic Fracture Toughness Test Using Three-Point Bending Specimen in SHPB[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 856-862. doi: 10.11858/gywlxb.2013.06.010 |
[10] | LIU Wei, LI Huo-Kun, LIU Cheng-Mei, LIU Wei-Lin. Numerical Simulation of Microchannel of Dynamic High-Pressure Microfluidization Based on FLUENT[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 113-120. doi: 10.11858/gywlxb.2012.01.017 |
[11] | MA Zhong-Liang, LIU Lin-Lin, XIAO Zhong-Liang. Mathematical Model and Numerical Simulation of Two-Phase Flow Interior Ballistics of Variable Burning-Rate Propellant[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 102-106. doi: 10.11858/gywlxb.2012.01.015 |
[12] | LIU Fang, LIU Yong-Gang, XIE Hong-Sen. Numerical Simulation of Temperature Field in Sample Assembly of Cubic Press[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 135-140. doi: 10.11858/gywlxb.2012.02.003 |
[13] | WANG Gang, ZHANG De-Liang, LIU Kai-Xin. Study on Chemical Reaction Models in Gaseous Detonation Numerical Simulation[J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 350-356 . doi: 10.11858/gywlxb.2008.04.003 |
[14] | WANG Yong-Gang, HE Hong-Liang, WANG Li-Li, JING Fu-Qian. Percolation Description for the Early Stage of Void Coalescence during Dynamic Tensile Fracture in Ductile Materials[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 127-132 . doi: 10.11858/gywlxb.2006.02.003 |
[15] | WU Yu-Yu, HE Yuan-Hang, LI Jin-Zhu. Application of the Coupling Method in Simulating the Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 385-389 . doi: 10.11858/gywlxb.2005.04.019 |
[16] | CAO Yu-Zhong, LU Ze-Sheng, GUAN Huai-An, ZHANG You-Ping. Numerical Simulations of Blast Flow-fields in Closed Blast-Resistant Containers[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 127-133 . doi: 10.11858/gywlxb.2001.02.009 |
[17] | ZHANG Wan-Jia, YANG Zhong-Zheng. Studies on the Fracture Behaviour for 93 Tungsten Alloy[J]. Chinese Journal of High Pressure Physics, 1995, 9(4): 279-288 . doi: 10.11858/gywlxb.1995.04.007 |
[18] | WANG Ze-Ping, HUANG Feng-Lei, DING Jing, HOU Min. Studies of Dynamic Damage Behavior in LY12 Aluminum Alloy under the Condition of High Loading Rate[J]. Chinese Journal of High Pressure Physics, 1993, 7(1): 23-32 . doi: 10.11858/gywlxb.1993.01.003 |
[19] | WANG Ze-Ping, HUANG Feng-Lei, YUN Shou-Rong. A Model for Numerical Calculations of Spallation in Brittle Solids[J]. Chinese Journal of High Pressure Physics, 1991, 5(2): 90-97 . doi: 10.11858/gywlxb.1991.02.002 |
[20] | DONG Yu-Bin, ZAHNG Wan-Jia, JING Fu-Qian, HAN Jun-Wan, CHEN Da-Nian, SU Lin-Xiang, FENG Jia-Bo. Numerical Analysis for Dynamic Damage Processes and LY-12 Aluminum Spallations[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 305-312 . doi: 10.11858/gywlxb.1988.04.003 |