
Citation: | TIAN Haoran, XU Liangxu, LI Nana, ZHANG Qian, LIN Junfu, LIU Jin. High-Pressure Electrical Conductivity of Single-Crystal Olivine[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060103. doi: 10.11858/gywlxb.20190775 |
夹芯结构由于具有较好的吸能缓冲性能以及较高的比强度和比刚度,被广泛应用于航空航天、交通运输、航海等领域。近年来随着对夹芯板研究的不断深入,提出了各种桁架夹芯和褶皱型夹芯等形式。其中,层级结构思想引起了众多学者的关注。Lakes[1]通过研究发现,层级结构与非层级结构相比具有更加显著的刚度和强度,同时也具有足够的稳定性及可靠性。Zhang等[2-3]通过梯形波纹板夹芯结构的静态压缩和低速冲击实验,研究了不同芯层材料、不同载荷下结构的能量吸收和变形过程,结果表明不同芯层材料和冲击能量下结构的能量吸收性能不同。Hou等[4]对不同层数的梯形夹芯板结构进行了实验研究,发现不同层数结构的能量吸收性能不同。Meza等[5]对多层级桁架结构的演变模式进行了分析,提出了几种不同结构的破坏形式和变形模式。Kooistra等[6]研究了层级波纹板结构的6种失效模式,并给出了结构在不同相对密度及角度下的破坏机理图。Velea等[7]提出了一种制备二级夹芯结构的方法,将一级波纹板结构芯层替换为多孔填充芯层,通过实验和理论分析发现,二级结构有着良好的刚度和强度。Wu等[8]将金字塔型夹芯结构的芯层替换为层级夹芯结构,理论推导出了结构的等效刚度,通过实验研究了芯层几何参数对结构变形模式的影响,并总结出结构的6种不同变形模式。Wu等[9]设计了二级金字塔形夹芯结构,进行了理论分析和数值模拟,结果表明二级芯层结构具有较好的强度和稳定性。Liu等[10]将传统格栅夹芯结构芯层板替换为蜂窝夹芯结构,通过实验研究和数值模拟研究发现,在压缩载荷下二级芯层结构有着较好的能量吸收性能和稳定的变形性能,在轻量化和能量吸收方面具有更好的工程应用前景。
多孔结构及蜂窝结构有着良好的力学性能和能量吸收性能[11]。Jing等[12]通过实验研究了3种不同多孔芯层夹芯板结构在脉冲载荷下夹芯板的变形模式,结果表明不同芯层夹芯结构的变形模式不同,芯层和面板尺寸不同的夹芯结构的力学性能不同。Chen等[13-14]根据层级蜂窝结构的设计理论设计了不同芯层形式的层级蜂窝结构,并由理论分析得到结构变形模式,利用有限元对结构变形模式进行了验证,与传统蜂窝结构相比,层级蜂窝结构具有更好的能量吸收性能。Yin[15]、Qiao[16]等利用有限元软件对层级蜂窝结构进行了数值模拟,研究结果表明层级蜂窝结构的力学性能远优于传统蜂窝。
已有的研究主要集中于传统波纹板夹芯结构和层级蜂窝结构,关于多层级夹芯结构的力学性能与能量吸收的研究较少。本研究基于波纹板夹芯结构,设计了3种二级波纹板夹芯结构,通过理论分析和数值模拟相结合的方法研究一级和二级夹芯结构的变形模式与能量吸收性能,理论预测结构的临界失效载荷;建立不同芯层层数的二级波纹板夹芯结构的有限元模型,研究不同芯层厚度对多层级波纹板夹芯结构变形模式和能量吸收性能的影响,并与传统的一级夹芯波纹板结构进行对比,分析其比吸能与结构效率。
根据层级蜂窝结构的设计理论,将一级梯形波纹板夹芯结构的芯层替换为三角形多孔夹芯结构,共设计了3种芯层结构,如图1所示。图1(a)为一级波纹板夹芯结构的芯层,斜板长度为la,顶板长度为l,斜板角度为
小支撑厚度与大支撑面板厚度相同的结构模型如图2所示,在外部载荷Fx和Fy作用下考虑横向小支撑的变形,基于小变形假设,由受力分析可以得到结构变形和力之间的关系,通过几何分析可以得到合力与变形之间的关系
{Fx2=Fncosω+FtsinωFy2=Fnsinω−Ftcosω |
(1) |
{δx=δncosω+δtsinωδy=δnsinω−δtcosω |
(2) |
式中:Fx和Fy分别为沿x轴和y轴的外部载荷,
当只有Fx作用时,
Fn=EAδnl=Fx2cosω |
(3) |
δn=FnlEA |
(4) |
式中:EA为夹芯夹层截面的抗拉刚度。由结构几何关系可知
δx=δncosω |
(5) |
当只有Fy作用时,
Fn=EAδnl=Fy2sinω |
(6) |
同样有
δy=δnsinω |
(7) |
当结构芯层为二级结构时,如图2(d)所示,(1)式~(7)式仍然成立。根据文献[17]给出的不同尺寸比下结构的失效机制,当
Fy′=(2n+2)σybtasinω |
(8) |
式中:n为二级结构层数,b为结构垂直于纸面方向的厚度,σy为屈服应力。
根据结构变形模式,考虑横向小支撑的变形,如图3所示,Fb为横向小支撑在y方向的力,
δb=Fbl3b3D |
(9) |
弯曲刚度
D=Et3b12(1−ν2) |
(10) |
式中:E为弹性模量,
Fb=2nσyt3bsinω4(1−ν2)l2b |
(11) |
式中:tb和lb分别为二级结构芯层小支撑厚度和长度。二级结构单胞在y方向的合力为
Fy=Fy′+Fb |
(12) |
有限元模型主要包括3部分:刚性压板、刚性支撑底板和波纹板夹芯结构。波纹板夹芯结构由芯层和上、下面板构成,上、下面板设置为刚体,厚度为2 mm。图4为二级双层结构有限元模型。波纹板夹芯结构和下部底板采用壳单元,刚性压板采用实体单元。刚性压板速度V=1 m/s,下部刚性底板固定,中部波纹板夹芯结构芯层与上、下两面板之间采用绑定约束。结构材料为铝合金6061-T6,材料参数如表1所示,其中
Material | ρ/(g·cm–3) | σy/MPa | E/GPa | ν |
Al 6061-T6 | 2.700 | 251 | 69 | 0.33 |
利用LS-DYNA进行准静态分析时[19]:首先在模拟过程中结构动能要相对于内能较小,其次结构的力-位移曲线相对于速度的变化是稳定的。如图6(a)所示,结构在压板速度为0.5 m/s和1.0 m/s时动能相对于内能较小,结构整体内能受速度变化的影响较小;图6(b)为结构在压板速度为0.5 m/s和1.0 m/s时的力-位移曲线,可以看出两条曲线的重合度较高,速度变化对结构力-位移曲线的影响较小。通过对结构进行网格敏感性验证,并考虑到计算时间等因素,计算时取压板的速度为1.0 m/s,网格单元尺寸为1 mm。
为了评估结构的能量吸收性能[20],选取总能量吸收(EA)、平均载荷(Pm)、比吸能(
总能量吸收EA为结构在变形过程中吸收的能量
EA=∫δ0F(x)dx |
(13) |
式中:
平均载荷Pm定义为单位变形长度的能量吸收
Pm=EA/δ |
(14) |
比吸能
ξEA=EA/m |
(15) |
式中:m为结构总质量。比吸能越大,结构的能量吸收性能越好。
载荷效率定义为平均载荷与峰值载荷的比值
AE=Pm/Pk |
(16) |
式中:Pk为峰值载荷。较好的吸能结构应该具有较大的载荷效率,并且力-位移曲线波动较小。
建立一级和二级结构模型,其中一级结构芯层壁厚为2 mm,二级结构模型中ta=tb,即二级结构内部小支撑厚度与外部大支撑面板厚度相同。层级结构芯层板厚度分别为0.565、0.75、1.00、1.25 mm,结构几何参数如表2所示。图7给出了一级和二级层级结构在不同芯层板厚度下的力-位移曲线。由图7可知,二级结构平台力明显高于一级结构。一级结构在靠近芯层上部产生塑性铰,随着变形的增大未产生新的塑性铰,力-位移曲线变化平稳。二级结构随着变形增大发生折叠塑性变形,力-位移曲线会随之发生波动;在芯层厚度为1.25 mm时二级单层结构由于变形模式发生变化,力-位移曲线发生波动而随之上升;随着二级结构层数的增加,结构平台力增大;随着二级结构厚度的增大,其平台力增大。
Type | l/mm | la/mm | lb/mm | ta/mm | tb/mm | θ/(°) | ω/(°) |
First order | 50 | 100 | 2 | 60 | |||
Second order-1 | 50 | 100 | 10 | 0.565/0.75/1.00/1.25 | 0.565/0.75/1.00/1.25 | 60 | 60 |
Second order-2 | 50 | 100 | 10 | 0.565/0.75/1.00/1.25 | 0.565/0.75/1.00/1.25 | 60 | 60 |
Second order-3 | 50 | 100 | 10 | 0.565/0.75/1.00/1.25 | 0.565/0.75/1.00/1.25 | 60 | 60 |
图8所示为不同芯层厚度下结构失效载荷理论值与模拟值的对比。对于数值模拟结果,当结构的承载力达到峰值时认为结构失效,即取力-位移曲线上的峰值载荷为结构失效载荷,可以看出理论值与模拟值吻合较好。当结构厚度为0.565 mm时,由于其厚度较小,在压缩载荷下的变形模式受屈曲影响较大,故理论值较模拟值偏大;当结构厚度为1.25 mm时,小支撑端部变形受边界条件的影响较大,理论值相对于模拟值偏小。
图9所示为芯层板厚度t=2 mm时一级结构在不同应变下的变形模式,应变为结构在受载荷方向上的变形位移与结构上、下两面板之间原始距离之比。由图9可知:一级结构首先发生屈曲,在靠近芯层斜支撑上部产生塑性铰,随着变形的增大,结构发生失稳,从而产生非对称变形。图10所示为二级结构在应变为0.3时不同芯层厚度下的变形模式,可以看出:当厚度较小时,结构的变形发生在整体斜支撑与整体水平支撑的交界处,整体斜支撑内部的小支撑发生逐层折叠的塑性变形;当芯层厚度为1.25 mm时,结构斜支撑整体产生塑性铰而发生非对称变形;厚度变化对二级双层和三层结构的变形模式影响较小。在芯层厚度较小时,二级结构主要为小支撑整体逐层发生塑性变形,从而有更多能量转换为非弹性能,提高了结构整体的能量吸收能力。
二级结构变形模式主要为小支撑逐层折叠的塑性变形,相对于一级结构,其在变形过程中小支撑不断发生塑性变形产生塑性铰,从而有更多的能量转换为非弹性能,提高了结构的能量吸收性能。图11为不同芯层厚度结构的比吸能柱状图。由图11可知:层级波纹板夹芯结构的比吸能高于传统波纹板夹芯结构;随着结构芯层厚度增大,结构的比吸能不断提高;由于二级单层结构变形模式的变化,芯层厚度较小时二级单层结构的比吸能高于二级双层及三层结构,厚度较大时二级单层结构的比吸能低于二级双层及三层结构;二级双层结构的比吸能略高于二级三层结构。
图12为结构载荷效率随芯层厚度的变化关系。随着芯层厚度的增大,结构的载荷效率提高,二级单层结构由于变形模式的变化,载荷效率发生波动。由于二级单层结构在芯层厚度为1.25 mm时结构变形模式为斜支撑整体发生失稳,相对于小支撑发生折叠变形时其能量吸收性能降低,从力-位移曲线可以看出,结构平台力减小导致结构的载荷效率下降。二级双层和三层结构的载荷效率不断增加,二级三层结构的载荷效率高于二级双层结构。
设计了不同层数的层级波纹板夹芯结构,利用数值模拟方法研究了在压缩载荷下层级夹芯结构的变形规律与能量吸收性能,理论推导了结构临界失效载荷公式;分析了结构参数对其变形模式和能量吸收性能的影响,并与一级结构进行了对比分析,得到如下研究结果。
(1)理论分析得到的结构失效载荷与数值模拟结果吻合较好。
(2)在准静态压缩载荷作用下,一级结构首先发生屈曲,随着变形增大,结构发生失稳而产生非对称变形;二级单层结构在厚度为1.25 mm时由于芯层整体产生塑性铰而失稳;二级双层和二级三层结构在整体斜支撑与整体水平支撑的交界处,整体斜支撑内部的小支撑发生逐层折叠的塑性变形。
(3)二级波纹板夹芯结构的比吸能显著大于一级结构;二级结构芯层小支撑发生逐层折叠的塑性变形时,结构能量吸收性能较好;随着芯层厚度的增大,二级结构的比吸能和载荷效率增加,芯层厚度较小时二级单层结构的比吸能高于二级双层和三层结构,二级双层结构的比吸能略大于二级三层结构。
[1] |
LARSEN J C. Low frequency (0.1-6.0 CPD) electromagnetic study of deep mantle electrical conductivity beneath the Hawaiian islands [J]. Geophysical Journal International, 1975, 43(1): 17–46. doi: 10.1111/j.1365-246X.1975.tb00626.x
|
[2] |
FILLOUX J H. Ocean-floor magnetotelluric sounding over North Central Pacific [J]. Nature, 1977, 269(5626): 297–301. doi: 10.1038/269297a0
|
[3] |
OLDENBURG D W. Conductivity structure of oceanic upper mantle beneath the Pacific plate [J]. Geophysical Journal International, 1981, 65(2): 359–394. doi: 10.1111/j.1365-246X.1981.tb02717.x
|
[4] |
SHANKLAND T J, O’CONNELL R J, WAFF H S. Geophysical constraints on partial melt in the upper mantle [J]. Reviews of Geophysics, 1981, 19(3): 394–406. doi: 10.1029/RG019i003p00394
|
[5] |
EVANS R L, HIRTH G, BABA K, et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates [J]. Nature, 2005, 437(7056): 249–252. doi: 10.1038/nature04014
|
[6] |
NAIF S, KEY K, CONSTABLE S, et al. Melt-rich channel observed at the lithosphere-asthenosphere boundary [J]. Nature, 2013, 495(7441): 356–359. doi: 10.1038/nature11939
|
[7] |
GAILLARD F, MALKI M, IACONO-MARZIANO G, et al. Carbonatite melts and electrical conductivity in the asthenosphere [J]. Science, 2008, 322(5906): 1363–1365. doi: 10.1126/science.1164446
|
[8] |
KARATO S I. The role of hydrogen in the electrical conductivity of the upper mantle [J]. Nature, 1990, 347(6290): 272–273. doi: 10.1038/347272a0
|
[9] |
WANG D, MOOKHERJEE M, XU Y, et al. The effect of water on the electrical conductivity of olivine [J]. Nature, 2006, 443(7114): 977–980. doi: 10.1038/nature05256
|
[10] |
YOSHINO T, MATSUZAKI T, YAMASHITA S, et al. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere [J]. Nature, 2006, 443(7114): 973–976. doi: 10.1038/nature05223
|
[11] |
YOSHINO T, MATSUZAKI T, SHATSKIY A, et al. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle [J]. Earth and Planetary Science Letters, 2009, 288(1/2): 291–300.
|
[12] |
POE B T, ROMANO C, NESTOLA F, et al. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa [J]. Physics of the Earth and Planetary Interiors, 2010, 181(3/4): 103–111.
|
[13] |
DUBA A G, SHANKLAND T J. Free carbon & electrical conductivity in the Earth’s mantle [J]. Geophysical Research Letters, 1982, 9(11): 1271–1274. doi: 10.1029/GL009i011p01271
|
[14] |
LASTOVICKOVÁ M. A review of laboratory measurements of the electrical conductivity of rocks and minerals [J]. Physics of the Earth and Planetary Interiors, 1991, 66(1/2): 1–11.
|
[15] |
DAI L, KARATO S. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine [J]. Earth and Planetary Science Letters, 2014, 408: 79–86. doi: 10.1016/j.jpgl.2014.10.003
|
[16] |
DAI L, KARATO S. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions [J]. Physics of the Earth and Planetary Interiors, 2014, 232: 51–56. doi: 10.1016/j.pepi.2014.03.010
|
[17] |
YANG X. Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle [J]. Earth and Planetary Science Letters, 2012, 317: 241–250.
|
[18] |
XU Y, SHANKLAND T J, DUBA A G. Pressure effect on electrical conductivity of mantle olivine [J]. Physics of the Earth and Planetary Interiors, 2000, 118(1/2): 149–161.
|
[19] |
YOSHINO T, SHIMOJUKU A, SHAN S, et al. Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8): 205–220.
|
[20] |
YOSHINO T, ZHANG B, RHYMER B, et al. Pressure dependence of electrical conductivity in forsterite [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 158–171. doi: 10.1002/2016JB013555
|
[21] |
BORUP K A, FISCHER K F, BROWN D R, et al. Measuring anisotropic resistivity of single crystals using the van der Pauw technique [J]. Physical Review B, 2015, 92(4): 045210. doi: 10.1103/PhysRevB.92.045210
|
[22] |
SHEN Y, KUMAR R S, PRAVICA M, et al. Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells [J]. Review of Scientific Instruments, 2004, 75(11): 4450–4454. doi: 10.1063/1.1786355
|
[23] |
MAO H K, XU J A, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
|
[24] |
刘锦, 孙樯. 硅油作为压力计的拉曼光谱研究 [J]. 光谱学与光谱分析, 2010, 30(9): 2390–2392. doi: 10.3964/j.issn.1000-0593(2010)09-2390-03
LIU J, SUN Q. Raman spectroscopic study on silicone fluid as pressure gauge [J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2390–2392. doi: 10.3964/j.issn.1000-0593(2010)09-2390-03
|
[25] |
王晓霞, 李志慧, 陈晨, 等. 硅油的高压拉曼散射 [J]. 高等学校化学学报, 2014, 35(11): 2384–2389.
WANG X X, LI Z H, LI C, et al. High pressure Raman spectra of silicone oil [J]. Chemical Journal of Chinese Universities, 2014, 35(11): 2384–2389.
|
[26] |
ROBERTS J J, TYBURCZY J A. Frequency dependent electrical properties of polycrystalline olivine compacts [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B10): 16205–16222. doi: 10.1029/91JB01574
|
[27] |
SINCLAIR D C, WEST A R. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance [J]. Journal of Applied Physics, 1989, 66(8): 3850–3856. doi: 10.1063/1.344049
|
[28] |
JOHNSON D. ZView: a software program for IES analysis. Version 2.8 [CP/OL]. Southern Pines, NC: Scribner Associates [2019-03-05]. http://www.scribner.com.
|
[29] |
ZHA C, DUFFY T S, DOWNS R T, et al. Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa [J]. Earth and Planetary Science Letters, 1998, 159(1/2): 25–33.
|
[30] |
DU FRANE W L, TYBURCZY J A. Deuterium-hydrogen exchange in olivine: implications for point defects and electrical conductivity [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q03004.
|
[31] |
GODDAT A, PEYRONNEAU J, POIRIER J P. Dependence on pressure of conduction by hopping of small polarons in minerals of the Earth’s lower mantle [J]. Physics and Chemistry of Minerals, 1999, 27(2): 81–87. doi: 10.1007/s002690050243
|
[32] |
KATSURA T, SATO K, ITO E. Electrical conductivity of silicate perovskite at lower-mantle conditions [J]. Nature, 1998, 395(6701): 493–495. doi: 10.1038/26736
|
[33] |
LIN J F, WEIR S T, JACKSON D D, et al. Electrical conductivity of the lower-mantle ferropericlase across the electronic spin transition [J]. Geophysical Research Letters, 2007, 34(16): L16305.
|
[34] |
OHTA K, HIROSE K, ONODA S, et al. The effect of iron spin transition on electrical conductivity of (Mg,Fe)O magnesiowüstite [J]. Proceedings of the Japan Academy Series B, 2007, 83(3): 97–100. doi: 10.2183/pjab.83.97
|
[35] |
YOSHINO T, ITO E, KATSURA T, et al. Effect of iron content on the spin transition pressure of ferropericlase [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B4): B04202.
|
[36] |
DOBSON D P, RICHMOND N C, BRODHOLT J P. A high-temperature electrical conduction mechanism in the lower mantle phase (Mg, Fe)1- xO [J]. Science, 1997, 275(5307): 1779–1781. doi: 10.1126/science.275.5307.1779
|
[37] |
NEAL S L, MACKIE R L, LARSEN J C, et al. Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean [J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8229–8242. doi: 10.1029/1999JB900447
|
[38] |
TARITS P, HAUTOT S, PERRIER F. Water in the mantle: results from electrical conductivity beneath the French Alps [J]. Geophysical Research Letters, 2004, 31(6): 265–282.
|
[39] |
JUNG H, KARATO S. Water-induced fabric transitions in olivine [J]. Science, 2001, 293: 1460–1463. doi: 10.1126/science.1062235
|
[1] | ZHU Zhikai, LI Zhongyang, KONG Lingping, LIU Gang. Recent Progress on Structural and Functional Evolutions of Metal Halide Perovskites under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050101. doi: 10.11858/gywlxb.20230768 |
[2] | LUORONG Dengzhu, LIU Xiaoru, YANG Jia, XIAO Likang, GUO Liang, WEI Zhantao, ZHOU Zhangyang, YI Zao, LIU Yi, FANG Leiming, XIONG Zhengwei. Tensile Behavior and Mechanical Performance Analysis of High-Strength Steels at Varying Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702 |
[3] | WU Xueqian, WANG Lingrui, YUAN Yifang, MA Liang, GUO Haizhong. Structural and Optical Properties of Telluride Double PerovskiteCs2TeBr6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050103. doi: 10.11858/gywlxb.20230708 |
[4] | ZHOU Xubiao, LI Shangsheng, LI Hongtao, SU Taichao, YANG Manman, DU Jingyang, HU Meihua, HU Qiang. Synthesis and Thermoelectric Properties of Sn1− |
[5] | NIE Shicheng, ZHANG Wei, TIAN Ge, WANG Zhijuan, GAN Wenmei, GAO Hong. Improvement of Emulsification Performance of Quinoa Protein by Ultra-High Pressure Treatment[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035901. doi: 10.11858/gywlxb.20200645 |
[6] | LIU Jing. High Pressure Diffraction Using Synchrotron Radiation[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050103. doi: 10.11858/gywlxb.20200586 |
[7] | JIANG Hongmei, CAO Ye, YANG Songrui, MA Zhiwei, FU Ruijing, SHI Yue, XIAO Guanjun. Band Gap Modulation of Orthorhombic Cesium Lead Iodide Perovskite Nanorods under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020101. doi: 10.11858/gywlxb.20190711 |
[8] | LI Hong-Tao, ZHANG Ji-Dong, XU Ling-Yun, ZHU Zhi-Xiu, ZHI Hui-Bo, WANG Biao, FAN Hao-Tian, SU Tai-Chao. Thermoelectric Properties of P-Type PbTe Prepared by High Pressure[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 448-452. doi: 10.11858/gywlxb.2016.06.002 |
[9] | FAN Hao-Tian, SU Tai-Chao, LI Hong-Tao, ZHU Hong-Yu, LIU Bing-Guo, LI Shang-Sheng, HU Mei-Hua, MA Hong-An, JIA Xiao-Peng. High Pressure Synthesis and Electrical Properties of Ag1-xPb18SbTe20[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 219-222. doi: 10.11858/gywlxb.2015.03.009 |
[10] | SU Tai-Chao, XU An-Tao, LI Hong-Tao, LI Shang-Sheng, FAN Hao-Tian, MA Hong-An, JIA Xiao-Peng. Electrical Transport Properties of PbSe Prepared by High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 495-499. doi: 10.11858/gywlxb.2013.04.004 |
[11] | ZHANG Xiang-Guo, MU Xin, ZHANG Zeng-Ming, DING Ze-Jun. Thermoelectric Properties of Nanoparticle PbTe under Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 141-147. doi: 10.11858/gywlxb.2012.02.004 |
[12] | SU Tai-Chao, ZHANG Shu-Guang, LI Xiao-Lei, MA Hong-An, LI Shang-Sheng, JIA Xiao-Peng, . Thermoelectric Properties of AgSbTe2-Sb2Te3 Prepared by High Pressure Synthesis[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 317-320 . doi: 10.11858/gywlxb.2011.04.005 |
[13] | SU Tai-Chao, ZHU Hong-Yu, LI Hong-Tao, LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, JIA Xiao-Peng. Electrical Properties of Thermoelectric Material of PbTe1-xSex Prepared by High Pressure Synthesis[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 247-250 . doi: 10.11858/gywlxb.2011.03.009 |
[14] | SUN Zhen-Ya, WANG Shuo, DENG Yun-Di, LI Ming-Fa. Effects of High Pressure Treatment on Structures and Luminescence Properties of Nano ZnO and Composite ZnO/SnO2 Materials[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 299-304 . doi: 10.11858/gywlxb.2009.04.010 |
[15] | SUN Shu-Hua, LI Jie, ZHAO Hai-Li, XU Rui, LIU Ri-Ping. Microstructural Characteristics in Al-Based Alloys Solidified under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 434-438 . doi: 10.11858/gywlxb.2008.04.017 |
[16] | LI Ming-Fa, FAN Duan, SUN Zhen-Ya, TIAN Xu, CHEN Li-Ying, YE Xian-Xian. The Microstructure and Thermal Performance of Phenolic Resin (PF)/Rectorite (REC) Nanocomposites Produced by High Pressure Method[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 57-61 . doi: 10.11858/gywlxb.2008.01.013 |
[17] | YANG Jing-Ru, LIU Lin, REN Yan-Jun, LIU Jian-Hua, ZHANG Rui-Jun. Effect of High Pressure and Heat Treatment on Microstructure of Aluminum Bronze[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 318-322 . doi: 10.11858/gywlxb.2008.03.017 |
[18] | QI Mei-Lan, HE Hong-Liang, WANG Yong-Gang, YAN Shi-Lin. Dynamic Analysis of Helium Bubble Growth in the Pure Al under High Strain-Rate Loading[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145-150 . doi: 10.11858/gywlxb.2007.02.005 |
[19] | LIU Wei, DU Jian-Guo, XIE Hong-Sen, ZHOU Wen-Ge, GUO Jie. Elastic P Wave Velocity and Attenuation in Dunite up to 4.0 GPa[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 293-298 . doi: 10.11858/gywlxb.2005.04.002 |
[20] | WANG Ru-Ju, LI Feng-Ying, XU Ji-An, Manghnani M H, XIE Hong-Sen. Investigations of Different Type of Glass by Ultrasonic Interferometer Technique at Room Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 1994, 8(3): 177-183 . doi: 10.11858/gywlxb.1994.03.004 |
Material | ρ/(g·cm–3) | σy/MPa | E/GPa | ν |
Al 6061-T6 | 2.700 | 251 | 69 | 0.33 |
Type | l/mm | la/mm | lb/mm | ta/mm | tb/mm | θ/(°) | ω/(°) |
First order | 50 | 100 | 2 | 60 | |||
Second order-1 | 50 | 100 | 10 | 0.565/0.75/1.00/1.25 | 0.565/0.75/1.00/1.25 | 60 | 60 |
Second order-2 | 50 | 100 | 10 | 0.565/0.75/1.00/1.25 | 0.565/0.75/1.00/1.25 | 60 | 60 |
Second order-3 | 50 | 100 | 10 | 0.565/0.75/1.00/1.25 | 0.565/0.75/1.00/1.25 | 60 | 60 |
Material | ρ/(g·cm–3) | σy/MPa | E/GPa | ν |
Al 6061-T6 | 2.700 | 251 | 69 | 0.33 |
Type | l/mm | la/mm | lb/mm | ta/mm | tb/mm | θ/(°) | ω/(°) |
First order | 50 | 100 | 2 | 60 | |||
Second order-1 | 50 | 100 | 10 | 0.565/0.75/1.00/1.25 | 0.565/0.75/1.00/1.25 | 60 | 60 |
Second order-2 | 50 | 100 | 10 | 0.565/0.75/1.00/1.25 | 0.565/0.75/1.00/1.25 | 60 | 60 |
Second order-3 | 50 | 100 | 10 | 0.565/0.75/1.00/1.25 | 0.565/0.75/1.00/1.25 | 60 | 60 |