Volume 34 Issue 1
Jan 2020
Turn off MathJax
Article Contents
FANG Jisong, WANG Zhu, XIONG Xun, ZHENG Yuxuan, ZHOU Fenghua. Fragmentation Process of Quartz Glass Spheres Impacting Rigid Wall[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014101. doi: 10.11858/gywlxb.20190764
Citation: FANG Jisong, WANG Zhu, XIONG Xun, ZHENG Yuxuan, ZHOU Fenghua. Fragmentation Process of Quartz Glass Spheres Impacting Rigid Wall[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014101. doi: 10.11858/gywlxb.20190764

Fragmentation Process of Quartz Glass Spheres Impacting Rigid Wall

doi: 10.11858/gywlxb.20190764
  • Received Date: 23 Apr 2019
  • Rev Recd Date: 15 May 2019
  • Publish Date: 25 Sep 2019
  • The high-speed gun is used to study the impact of quartz glass ball on rigid target plate. The crushing process and failure mode of the ball at different speeds are analyzed. When the impact velocity is lower than the critical failure velocity, the quartz glass ball rebounds from the target plate, and the rebounding speed is slightly below the original speed; when the critical speed is exceeded, the sphere exhibits a “compressed fracture zone–surface spalling zone–shear failure zone” failure structure; further increasing the collision velocity, the expansion of the shear failure zone causes the sphere to be fragmented into several “crescent” fragments. At higher impact speeds, the quartz glass ball collapses and spalls at a distance away from the impact end. Furthermore, the discrete element software is utilized to simulate the impact damage process of the sphere. The crushing of the sphere under high-speed collision can be divided into three stages: elastic compression, integral crushing, secondary impact. Before the ball breaks, the Hertz contact theory can describe its impact force well, but the crushing force is much smaller than the theoretical value due to the fracture unloading, and the deviation gradually increases with the increasing impact speed.

     

  • loading
  • [1]
    刘瑜, 杜长龙, 付林, 等. 煤块冲击破碎速度研究 [J]. 振动与冲击, 2011, 30(3): 18–21. doi: 10.3969/j.issn.1000-3835.2011.03.005

    LIU Y, DU C L, FU L, et al. Impact crushing velocity of lump coal [J]. Journal of Vibration and Shock, 2011, 30(3): 18–21. doi: 10.3969/j.issn.1000-3835.2011.03.005
    [2]
    李艳焕, 邵良杉, 徐振亮. 煤粒冲击粉碎临界速度的数值实验分析 [J]. 振动与冲击, 2017, 36(5): 227–230.

    LI Y H, SHAO L B, XU Z L. Numerical analysis for critical velocity of coal impacting and comminution [J]. Journal of Vibration and Shock, 2017, 36(5): 227–230.
    [3]
    沈位刚, 赵涛, 唐川, 等. 落石冲击破碎特征的加载率相关性研究 [J]. 工程科学与技术, 2018(1): 43–50.

    SHEN W G, ZHAO T, TANG C, et al. Loading rate dependency of impact induced rock fragmentation during rockfall [J]. Advanced Engineering Sciences, 2018(1): 43–50.
    [4]
    房丽娜, 马正先, 李慧, 等. 粉碎设备及技术的发展历程与研究进展 [J]. 有色矿冶, 2005(Suppl 1): 178–180.

    FANG L N, MA Z X, LI H, et al. Development history and research progress of crushing equipment and technology [J]. Non-Ferrous Mining and Metallurgy, 2005(Suppl 1): 178–180.
    [5]
    ANDREWS E W, KIM K S. Threshold conditions for dynamic fragmentation of glass particles [J]. Mechanics of Materials, 1999, 31(11): 689–703. doi: 10.1016/S0167-6636(99)00024-1
    [6]
    ANDREWS E W, KIM K S. Threshold conditions for dynamic fragmentation of ceramic particles [J]. Mechanics of Materials, 1998, 29(11): 161–180.
    [7]
    SALMAN A D, GORHAM D A. The fracture of glass spheres [J]. Powder Technology, 2000, 107(1): 179–185.
    [8]
    SALMAN A D, GORHAM D A, VERBA A. A study of solid particle failure under normal and oblique impact [J]. Wear, 1995, 186(95): 92–98.
    [9]
    SALMAN A D, REYNOLDS G K, FU J S, et al. Descriptive classification of the impact failure modes of spherical particles [J]. Powder Technology, 2004, 143(26): 19–30.
    [10]
    CHAU K T, WEI X X, WONG R H C, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses [J]. Mechanics of Materials, 2000, 32(9): 543–554. doi: 10.1016/S0167-6636(00)00026-0
    [11]
    WU S Z, CHAU K T, YU T X. Crushing and fragmentation of brittle spheres under double impact test [J]. Powder Technology, 2004, 143/144: 41–55. doi: 10.1016/j.powtec.2004.04.028
    [12]
    易洪昇, 徐松林, 单俊芳, 等. 不同加载速度下脆性颗粒的破坏特性 [J]. 爆炸与冲击, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10

    YI H S, XU S L, SHAN J F, et al. Fracture characteristics of brittle particles at different loading velocities [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10
    [13]
    POTYONDY D O. A bonded-particle model for rock [J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8): 1329–1364.
    [14]
    SHEN W G, ZHAO T, CROSTA G B, et al. Analysis of impact-induced rock fragmentation using a discrete element approach [J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 98: 33–38.
    [15]
    CARMONA H A, WITTEL F K, KUN F, et al. Fragmentation processes in impact of spheres [J]. Physical Review E, 2008, 77(5): 051302.
    [16]
    XIA M, ZHAO C B. Simulation of rock deformation and mechanical characteristics using clump parallel-bond models [J]. Journal of Central South University, 2014, 21(7): 2885–2893. doi: 10.1007/s11771-014-2254-3
    [17]
    YANG B, JIAO Y, LEI S. A study on the effects of microparameters on macroproperties for specimens created by bonded particles [J]. Engineering Computations, 2006, 23(6): 607–631. doi: 10.1108/02644400610680333
    [18]
    PARK J W, SONG J J. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(8): 1315–1328.
    [19]
    熊迅, 李天密, 马棋棋, 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟 [J]. 力学学报, 2018, 50(3): 178–188.

    XIONG X, LI T M, MA Q Q, et al. Discrete element simulation of the high velocity expansion and fragmentation of quartz glass rings [J]. Chinese Journal Theoretical and Applied Mechanics, 2018, 50(3): 178–188.
    [20]
    KNIGHT C G, SWAIN M V, CHAUDHRI M M. Impact of small steel spheres on glass surfaces [J]. Journal of Materials Science, 1977, 12(8): 1573–1586. doi: 10.1007/BF00542808
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(11649) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return