DONG Qi, WEI Zhuobin, TANG Ting, ZHANG Ning. Influence of Explosion Depth on Bubble Pulsation in Shallow Water Explosion[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 024102. doi: 10.11858/gywlxb.20170580
Citation: KANG Xu, LIU Jin. Phase Retrieval and Reconstruction of Coherent Diffraction Imaging[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030105. doi: 10.11858/gywlxb.20190761

Phase Retrieval and Reconstruction of Coherent Diffraction Imaging

doi: 10.11858/gywlxb.20190761
  • Received Date: 18 Apr 2019
  • Rev Recd Date: 14 May 2019
  • The coherent diffraction imaging (CDI) is an ultra-high resolution imaging technique that is sensitive to the density of the material. Compared to the surface-sensitive imaging methods with ultra-high resolution, the CDI is able to probe the interior of the sample by taking advantages of hard X-rays. According to the imaging layout, the space resolution of CDI is variable and can reach up to an atomic scale. This feature depends on the iterative phase retrieval method that almost becomes the signature of CDI. Based on oversampling a sample in a detected image, the phase and intensity of X-ray beam can be retrieved simultaneously by iterative calculations with constraints, and then are used to reconstruct the sample. Meanwhile, the three-dimensional reconstruction could be realized by combining image orientating and merging techniques. Here we present the imaging theory, phase retrieval and reconstruction methods of the CDI technique, and its diagnostic ability in a variety of reconstruction situations by experimental and simulation examples, to hopefully provide a systematic introduction of its development.

     

  • Mn+1AXn相材料是三元层状化合物(简称MAX相材料),其中:M代表Ti、V、Zr等过渡金属元素;A代表A组元素;X代表C或者N;n=1, 2, 3, ···[1]。MAX相这一概念最早由Barsoum[2]提出,这类材料普遍具有陶瓷材料和金属材料的双重特性,可在高压、高温、强腐蚀等极端条件下稳定存在[3-4],并表现出较好的稳定性和抗氧化性,具有极其重要的研究价值和广阔的发展前景[5],因此探究高压等极端状态下的晶体性质变化具有重要意义。

    近年来,有关三元层状Mn+1AXn相材料的研究很多,主要集中在211相、312相和413相[6]。随着研究的深入,Mn+1A2Xn双“A”层221相、322相等结构被陆续得到,第一种双“A”层MAX相化合物Mo2Ga2C由Hu等[7]于2015年成功制备,2016年Thore等[8]通过第一性原理计算预测出V2Ga2C的存在,V2Ga2C、Ti3Au2C2等双“A”型MAX相的理论预测和实验制备极大地丰富了MAX族化合物[9]。V2Ga2C 是典型的由理论预测得到的新型双“A”层MAX相材料, Thore等[10]根据声子谱没有虚频判定V2Ga2C具有稳定结构,研究发现这类双“A”层的MAX相材料普遍具有较强的金属性,如更好的机械延展性、易于加工等[11]。目前,常压下V2Ga2C的研究日趋丰富,受限于实验条件的复杂性,高压下V2Ga2C的结构、电子、弹性等性能研究较为困难,为此基于密度泛函理论的第一性原理计算能够很好地解决这一问题。

    本研究通过第一性原理对V2Ga2C六方结构的能带结构、态密度等电子结构和弹性性能等力学性质进行计算,根据玻恩稳定准则等相关理论,预测高压状态下V2Ga2C结构的力学稳定性,并对高压下V2Ga2C的晶体结构、电子结构和弹性性质等进行分析,为新型双“A”型Mn+1A2Xn相的相关研究提供理论参考。

    采用第一性原理计算方法,运用基于密度泛函理论的Materials Studio软件中的CASTEP量子力学程序[12-13],选用倒易点阵空间表征的Cepeley-Alder超软赝势[14]。利用总能量的平面波赝势替代离子势,并通过广义梯度近似(Generalized gradient approximation, GGA)中的PBE(Perdew, Burke and Ernzerhof)[15-16]方法对电子间的相互作用和相关势进行校正。为确保总能量和原子间的作用力最小化,采用Broyden-Fletcher-Goldfarb-Shanno(BFGS)算法,布里渊区K点网格数为17 × 17 × 3,平面波截断能选取550 eV。进行原胞的几何优化(Geometry)时,能量收敛标准为5×10−6 eV/atom,最大作用力为0.01 eV/Å,应力偏差小于0.02 GPa,自洽场收敛精度为5×10−7 eV/atom。

    V2Ga2C为六方晶系,空间群是P63/mmc,每个晶胞有10个原子,晶体结构见图1。V2Ga2C晶体与常见的V2GaC的结构和性质类似,晶胞键角α=β=90°,γ=120°,不同的是V2Ga2C有双Ga层结构及不同的晶胞键长aa=b)、c,V2Ga2C晶胞中各原子坐标为V(1/3, 2/3, 0.0645)、Ga(1/3, 2/3, 0.6814)、C(0, 0, 0)。经优化计算,得到V2Ga2C的晶胞参数为a=b=2.950 Å,c=17.807 Å,与Thore等[8]计算得到的数据(a=b=3.064 Å,c=18.153 Å)基本一致,即本研究构建的模型是准确可行的。

    图  1  V2Ga2C的晶体结构
    Figure  1.  Crystal structure of V2Ga2C

    为了研究高压对V2Ga2C晶胞结构的影响,在0~70 GPa压强范围内以10 GPa为间隔进行结构优化,得到V2Ga2C晶胞的相对晶格参数变化情况,见图2。从图2可以看出,随着压强增大,晶格常数ac和体积V均有不同程度的减小,同时在压强范围内V2Ga2C晶胞表现出较好的可压缩性,其中相对键长比a/a0c/c0从1逐渐减小到0.9019和0.9331,相对晶格参数c/a从0 GPa的6.0362上升到70 GPa的6.2455,c轴较a轴随压强增大收缩得较慢,且键长的减小导致了晶胞体积V的缩小,上述晶胞参数的变化均体现了V2Ga2C的各向异性。此外,根据计算得到的V2Ga2C晶胞在不同压力下的晶格参数及相对晶格常数a/a0c/c0c/a和相对晶胞体积V/V0的变化趋势平缓,可判定在0~70 GPa压力范围内V2Ga2C很难发生相变,即本研究利用图1的V2Ga2C结构探究压力对其电子性质、弹性性质的影响是合理准确的。

    图  2  V2Ga2C的相对晶格参数和相对体积随压强的变化
    Figure  2.  Pressure dependence of relative lattice parameters and relative unit cell volume for V2Ga2C

    力学稳定性是晶体材料稳定存在的重要因素。为研究压强对V2Ga2C晶胞力学稳定性的影响,从0 GPa开始,以每10 GPa为一个间隔进行结构优化,通过不同压强下的弹性常数预测V2Ga2C晶胞的力学稳定性。通过各个压强状态下V2Ga2C晶胞的结构优化,得到0~80 GPa不同压强状态下的晶体结构,各压强状态下的弹性常数见表1

    表  1  不同压强下V2Ga2C的弹性常数
    Table  1.  Pressure dependences of elastic constants for V2Ga2C
    Pressure/GPaC11/GPaC33/GPaC44/GPaC12/GPaC13/GPa
    0275.07309.0488.9265.6948.31
    10325.89437.85103.7079.38101.23
    20392.18492.57112.70113.70122.66
    30475.27582.9099.80176.94174.81
    40462.17636.80103.00156.69180.10
    50524.87696.2551.41228.45221.66
    60558.67743.3429.53220.05219.34
    70640.36854.904.53280.99275.36
    80618.66892.67−84.84305.13305.24
    下载: 导出CSV 
    | 显示表格

    弹性常数是晶体对作用力反应最直观的数据体现。根据V2Ga2C的晶胞结构,V2Ga2C晶体的弹性常数具有对称性,即C11= C22C13=C31=C32=C23C12=C21C44=C55。由表1数据可知,弹性常数C11C33随压强的增大逐渐增大,C44先增大后逐渐变小直至减小到负数,C12C13C66也有不同程度的增大。V2Ga2C晶胞为六方晶系,因此可以通过玻恩稳定准则[17]、正交系统的力学稳定性公式[18]以及弹性常数的变化规律,预测V2Ga2C六方三元层状化合物的力学稳定性。

    玻恩稳定准则可写为

    C12>0,C33>0,C44>0,C11C12>0,(C11+C12)C332C213>0
    (1)

    验证V2Ga2C晶胞正交系统力学稳定性的公式为

    Cij>0(i=j,0i6),C11+C222C12>0,C11+C332C13>0,C22+C332C23>0,C11+C22+C33+2C12+2C13+2C23>0
    (2)

    表1的弹性常数代入式(1)、式(2),可知V2Ga2C晶胞在0~70 GPa符合式(1),在80 GPa时不符合式(1)。因此六方V2Ga2C晶胞的的弹性常数在0~70 GPa压强范围内处于力学稳定状态,80 GPa下V2Ga2C晶胞结构不稳定。

    为了研究压强对V2Ga2C晶体弹性性质的影响,在不同的压强下对晶胞结构进行优化,在此基础上计算不同压强状态下的弹性常数(见表1)。弹性常数C11C22C33分别表示晶胞受压沿a、bc轴的线性压缩阻力,C11C22较小而C33最大,说明V2Ga2C在a、b轴上容易压缩,在c轴上难压缩;弹性常数C44C55C66与材料抗剪切变形能力有关,C44还与硬度有关,随压强增大而减小的C44表明V2Ga2C材料抵抗形变的能力一般。

    根据Voigt-Reuss-Hill近似理论[19],V2Ga2C的体积弹性模量B的最大值BV、最小值BR和平均值BH,以及剪切弹性模量G的最大值GV、最小值GR和平均值GH可以通过式(3)~式(8)得到

    BV=2(C11+C12)+C33+4C139
    (3)
    BR=(C11+C12)C332C213C11+C12+2C334C13
    (4)
    BH=BV+BR2
    (5)
    GV=C11+C12+2C334C13+12C55+12C663
    (6)
    GR=52[(C11+C12)C332C213]C55C663BVC55C66+[(C11+C12)C332C213](C55+C66)
    (7)
    GH=GV+GR2
    (8)

    根据Pugh准则[17]可以鉴别晶体的韧脆性,BH/GH < 1.74为脆性材料,相反为韧性材料。根据表1弹性常数和式(3)~式(8),可以计算体积模量BH和剪切模量GH,得到压强与BH/GH的关系曲线,见图3。从图3可以明显看出,压强小于20.15 GPa时,V2Ga2C表现为脆性材料,压强为20.15~70.00 GPa时表现为韧性材料。此外,通过式(9)可以预测维氏硬度(HV)的变化(其中K = GH/BHHV的单位为GPa),维氏硬度随压强的变化见图4。从图4中曲线的变化趋势可以看出,维氏硬度随着压强的增大逐渐变小,原因是V2Ga2C晶胞的键长和a、b轴随压强的增大急剧压缩,故维氏硬度随之减小。

    图  3  压强与BH/GH之间的关系
    Figure  3.  Pressure dependence of BH/GH
    图  4  V2Ga2C材料的维氏硬度随压强的变化
    Figure  4.  Pressure dependence of Vickers hardness for V2Ga2C
    HV=0.92K1.137G0.708H
    (9)

    然而遗憾的是,目前公开发表的有关V2Ga2C在高压状态下的力学性能研究报道较少,难以与本计算得到的理论预测进行对比分析。

    为探究压强与V2Ga2C电子性质的关系,在0~70 GPa的压强范围内通过GGA-PBE密度泛函理论计算,得到V2Ga2C的能带结构图、电子总态密度图,其中0 eV处的虚线表示费米能。

    下面以0、35和70 GPa的能带结构为例进行分析,如图5所示。从图5可以明显看出,0 GPa下V2Ga2C无带隙,35 GPa下仍无带隙,直到接近力学稳定临界状态的70 GPa下仍未产生带隙,总体上能带曲线仅有很小幅度的变化。由此可知,在力学稳定范围内,V2Ga2C均无带隙,且压强的增加对能带结构的影响很小,即V2Ga2C材料为导体材料且压强对其影响较小或几乎没有影响。

    图  5  不同压强下V2Ga2C的能带结构
    Figure  5.  Pressure dependence of electronic band structures for V2Ga2C

    电子态密度也是V2Ga2C电子性质的重要组成部分,选取0、35和70 GPa状态下的电子态密度分析压强与电子态密度的关系,见图6。由图6可知,随着压强增大,V2Ga2C的总态密度在费米能级附近变动较小,对电子性质影响较小。

    图  6  不同压强下V2Ga2C的总态密度
    Figure  6.  Pressure dependence of total state density for V2Ga2C

    基于密度泛函理论的第一性原理,研究了压强对V2Ga2C晶体的力学稳定性及压强对V2Ga2C结构、弹性和电子性质的影响。根据玻恩稳定准则预测了V2Ga2C结构稳定存在的压强区间为0~70 GPa,并通过正交系统的力学稳定公式验证结果可靠。同时,研究了0~70 GPa压强下V2Ga2C的晶体结构、弹性性质与电子结构,压强使V2Ga2C压缩,体积、相对晶胞参数a/a0c/c0等均有不同程度的减小,都体现了V2Ga2C具有各向异性;随着压强增大,通过弹性常数可知V2Ga2C在a、b轴上较c轴易压缩,且在20.15 GPa时从韧性转变为脆性,其硬度也随之变小;从V2Ga2C在各个压强状态下的态密度和能带结构可知,在力学稳定的条件下压强对V2Ga2C材料的电子性质影响不大。然而目前有关V2Ga2C材料的研究较少,希望本研究结果可以为双“A”型MAX相材料的实验制备和理论研究提供参考。

  • [1]
    CHAO W, HARTENECK B D, LIDDLE J A, et al. Soft X-ray microscopy at a spatial resolution better than 15 nm [J]. Nature, 2005, 435(7046): 1210. doi: 10.1038/nature03719
    [2]
    BARBER J L, BARNES C W, SANDBERG R L, et al. Diffractive imaging at large fresnel number: challenge of dynamic mesoscale imaging with hard X-rays [J]. Physical Review B, 2014, 89(18): 184105. doi: 10.1103/PhysRevB.89.184105
    [3]
    XIAO X H, SHEN Q. Wave propagation and phase retrieval in fresnel diffraction by a distorted-object approach [J]. Physical Review B, 2005, 72(3): 033103. doi: 10.1103/PhysRevB.72.033103
    [4]
    MIAO J W, AMONETTE J E, NISHINO Y, et al. Direct determination of the absolute electron density of nanostructured and disordered materials at sub-10-nm resolution [J]. Physical Review B, 200, 68(1): 012201.
    [5]
    SAYER D. Some implications of a theorem due to shannon [J]. Acta Crystallographica, 1952, 5: 843.
    [6]
    GERCHBERG R W, SAXTON W O. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik, 1972, 35: 237.
    [7]
    FIENUP J R. Phase retrieval algorithm: a comparison [J]. Applied Optics, 1982, 21: 2758. doi: 10.1364/AO.21.002758
    [8]
    ELSER V. Phase retrieval by iterated projections [J]. Journal of the Optical Society of America, 2003, 20(1): 40. doi: 10.1364/JOSAA.20.000040
    [9]
    CHEN C C, MIAO J, WANG C W, et al. Application of optimization technique to noncrystalline X-ray diffraction microscopy: guided hybrid input-output method [J]. Physical Review B, 2007, 76(6): 064113. doi: 10.1103/PhysRevB.76.064113
    [10]
    LUKE D R. Relaxed averaged alternating reflections for diffraction imaging [J]. Inverse Problems, 2005, 21: 37. doi: 10.1088/0266-5611/21/1/004
    [11]
    MARCHESINI S, HE H, CHAPMAN H N, et al. X-ray image reconstruction from a diffraction pattern alone [J]. Physical Review B, 2003, 68: 140101. doi: 10.1103/PhysRevB.68.140101
    [12]
    MIAO J, SYAER D, CHAPMAN H N. Phase retrieval from the magnitude of the fourier transforms of nonperiodic objects [J]. Josa A, 1998, 15: 1662. doi: 10.1364/JOSAA.15.001662
    [13]
    周光照, 佟亚军, 陈灿, 等. 相干X射线衍射成像的数字模拟研究 [J]. 物理学报, 2011, 60(2): 028701.

    ZHOU G Z, TONG Y J, CHEN C, et al. Digital simulation for coherent X-ray diffractive imaging [J]. Acta Physica Sinica, 2011, 60(2): 028701.
    [14]
    VARTANYANTS I A, ROBINSON I K. Partial coherence effects on the imaging of small crystals using coherent X-ray diffraction [J]. Journal of Physics: Condensed Matter, 2001, 13(47): 10593. doi: 10.1088/0953-8984/13/47/305
    [15]
    MIAO J W, CHARALAMBOUS P, KIRZ J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens [J]. Nature, 1999, 400: 342. doi: 10.1038/22498
    [16]
    MIAO J W, NISHINO Y, KOHNURA Y, et al. Quantitative image reconstruction of GaN quantum dots from oversampled diffraction intensities alone [J]. Physical Review Letters, 2005, 95(8): 085503. doi: 10.1103/PhysRevLett.95.085503
    [17]
    NISHINO Y, TAKAHASHI Y, IMAMOTO N, et al. Three-dimensional visualization of a human chromosome using coherent X-ray diffraction [J]. Physical Review Letters, 2009, 102(1): 018101. doi: 10.1103/PhysRevLett.102.018101
    [18]
    EKEBERG T, SVENDA M, ABERGEL C, et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser [J]. Physical Review Letters, 2015, 114(9): 098102. doi: 10.1103/PhysRevLett.114.098102
    [19]
    DUANE N T, ELSER V. Reconstruction algorithm for single-particle diffraction imaging experiments [J]. Physical Review E, 2009, 80(2): 026705. doi: 10.1103/PhysRevE.80.026705
    [20]
    MIAO J W, CHEN C C, SONG C, et al. Three-dimensional GaN-Ga2O3 core shell structure revealed by X-ray diffraction microscopy [J]. Physical Review Letters, 2006, 97(21): 215503. doi: 10.1103/PhysRevLett.97.215503
    [21]
    TAKAHASHI Y, NISHINO Y, TSUTSUMI R, et al. High-resolution projection image reconstruction of thick objects by hard X-ray diffraction microscopy [J]. Physical Review B, 2010, 82(21): 214102. doi: 10.1103/PhysRevB.82.214102
    [22]
    THIBAULT P, DIEROLF M, MENZEL A, et al. High-resolution scanning X-ray diffraction microscopy [J]. Science, 2008, 321(5887): 379. doi: 10.1126/science.1158573
    [23]
    RODENBURG J M, HURST A C, CULLIS A G, et al. Hard-X-ray lensless imaging of extended objects [J]. Physical Review Letters, 2007, 98(3): 034801. doi: 10.1103/PhysRevLett.98.034801
    [24]
    KLAUS G, PIERRE T, SEBASTIAN K, et al. Quantitative biological imaging by ptychographic X-ray diffraction microscopy [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 529. doi: 10.1073/pnas.0905846107
    [25]
    DIEROLF M, MENZEL A, THIBAULT P, et al. Ptychographic X-ray computed tomography at the nanoscale [J]. Nature, 2010, 467(7314): 436. doi: 10.1038/nature09419
    [26]
    ROBINSON I K, VARTANYANTS I A, WILLIAMS G J, et al. Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction [J]. Physical Review Letters, 2001, 87(19): 195505. doi: 10.1103/PhysRevLett.87.195505
    [27]
    WILLIAMS G J, PFEIFER M A, VARTANYANTS I A, et al. Three-dimensional imaging of microstructure in Au nanocrystals [J]. Physical Review Letters, 2003, 90(17): 175501. doi: 10.1103/PhysRevLett.90.175501
    [28]
    PFEIFER M A, WILLIAMS G J, VARTANYANTS I A, et al. Three-dimensional mapping of a deformation field inside a nanocrystal [J]. Nature, 2006, 442(7098): 63. doi: 10.1038/nature04867
    [29]
    NEWTON M C, LEAKE S J, HARDER R, et al. Three-dimensional imaging of strain in a single ZnO nanorod [J]. Nature Materials, 2010, 9(2): 279.
    [30]
    HARDER R, ROBINSON I. Coherent X-ray diffraction imaging of strain at the nanoscale [J]. Nature Materials, 2009, 8(4): 291. doi: 10.1038/nmat2400
    [31]
    GANG X, OUSSAMA M, MANFRED R, et al. Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures [J]. Advanced Materials, 2014, 26(46): 7747. doi: 10.1002/adma.v26.46
  • Relative Articles

    [1]ZHENG Feili, YAN Jian, HUANG Yanping, LUO Xuan, CHI Zhenhua, LYU Xindeng, CUI Tian. Physical Properties of Two-Dimensional Layered FePSe3 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021101. doi: 10.11858/gywlxb.20230617
    [2]LIU Haowei, SU Buyun, QIU Ji, LI Zhiqiang. Numerical Simulation of Multiaxial Creep Behavior of 2D Anisotropic Cellular Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064202. doi: 10.11858/gywlxb.20200561
    [3]ZHAO Haibo, XIAO Bo, BAI Jinsong, DUAN Shuchao, WANG Ganghua, KAN Mingxian, CHEN Fang. Simulation of Two-Dimensional Multi-Material Compressible Flows Using Lagrangian Methods[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 042303. doi: 10.11858/gywlxb.20170694
    [4]LIU Hai-Feng, HAN Li. Numerical Simulation of Dynamic Mechanical Behavior of Concrete with Two-dimensional Random Distribution of Coarse Aggregate[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 191-199. doi: 10.11858/gywlxb.2016.03.003
    [5]QI Mei-Lan, RAN Xiao-Xia, BIE Bi-Xiong, FAN Duan, LI Ping. Quantify the Errors of Two-Dimensional Technique by Comparing to Three-Dimensional Measurement Method on Evaluating Damage in Shocked Ultrapure Aluminum[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 273-278. doi: 10.11858/gywlxb.2015.04.006
    [6]WANG Tao, BAI Jin-Song, LI Ping, TAO Gang, JIANG Yang, ZHONG Min. Two and Three Dimensional Numerical Investigations of the Single-Mode Richtmyer-Meshkov Instability[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 277-286. doi: 10.11858/gywlxb.2013.02.016
    [7]LI Lei, BAI Jin-Song, LIU Kun, LI Ping. 2-D GEL Coupling Method and Its Numerical Simulation on Vessel to Explosion Impact Load[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 549-556. doi: 10.11858/gywlxb.2011.06.011
    [8]LI Cheng-Bing, WU Guo-Dong, JING Fu-Qian. Two-Dimensional Numerical Simulation of Explosion for Premixed CH4-O2-N2 Mixture[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 367-376 . doi: 10.11858/gywlxb.2009.05.008
    [9]WANG Tao, BAI Jing-Song, LI Ping. Two-Dimensional Numerical Simulation of Gas/Liquid Interface Instability[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 298-304 . doi: 10.11858/gywlxb.2008.03.013
    [10]WANG Su-Qin, GU Min. Synthesis and Characterization of Two-Dimensional Rh-C60 Polymer[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 35-38 . doi: 10.11858/gywlxb.2008.01.008
    [11]LI Cheng-Bing, PEI Ming-Jing, SHEN Zhao-Wu. Three-Dimensional Numerical Simulation of the High Velocity Rod-Shaped Projectile[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 165-172 . doi: 10.11858/gywlxb.2007.02.008
    [12]HAO Li, NING Jian-Guo, WANG Cheng. 2D Numerical Simulation of Explosive Damage Effect on Obstacles in Water[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 39-44 . doi: 10.11858/gywlxb.2006.01.009
    [13]LI Zi-Jun, LI Gang. Magnetic Field and Temperature Effects on the Self-Trapping Energy of the 2-D Spin Magnetopolaron in an InAs Crystal[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 45-50 . doi: 10.11858/gywlxb.2005.01.009
    [14]BAI Jing-Song, LI Ping, ZHONG Min, JIANG Yang, ZHANG Zhan-Ji, YU Ji-Dong. Numerical Simulation of Different Cavities Compression by the High Pressure[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 17-23 . doi: 10.11858/gywlxb.2005.01.004
    [15]TAN Fu-Li, LI Yong-Chi, GUO Yang, CAO Jie-Dong. One-Dimensional and Two-Dimensional Computation of Metal Spallation Induced by Laser[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 24-28 . doi: 10.11858/gywlxb.2005.01.005
    [16]DONG Gang, FAN Bao-Chun, XIE Bo. Two-Dimensional Simulation of Transient Detonation Process for H2-O2-N2 Mixture[J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 40-46 . doi: 10.11858/gywlxb.2004.01.008
    [17]LIANG Long-He, CAO Ju-Zhen, YUAN Xian-Chun. 2-D Nummerical Simulation of Characteristics of Underwater Explosions[J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 203-208 . doi: 10.11858/gywlxb.2004.03.003
    [18]XU Li, SUN Jin-Shan. A Comparative Study of the Evolution of R-T Instability in Two and Three Dimensions[J]. Chinese Journal of High Pressure Physics, 2003, 17(3): 180-186 . doi: 10.11858/gywlxb.2003.03.004
    [19]ZHANG Zhen-Yu, WANG Zhi-Bing, HUANG Tie-Jun, LU Fang-Yun, HUAN Shi. Two-Dimensional Numerical Simulation for the Inertial Effect of EMV Gauge Moving with Detonation Wave[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 187-191 . doi: 10.11858/gywlxb.1999.03.006
    [20]ZHAO Min, SUN Feng-Guo, TANG Rong-Qi. Numerical Calculation for Latent Heat and Thermal Expansion Coefficient of a Two Dimensional Hard Disk System[J]. Chinese Journal of High Pressure Physics, 1993, 7(2): 152-155 . doi: 10.11858/gywlxb.1993.02.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(9563) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return