Volume 33 Issue 6
Nov 2019
Turn off MathJax
Article Contents
MING Dehan, OU Zhuocheng, YANG Xiao, DUAN Zhuoping, HUANG Fenglei. Ubiquitiform Crack of Quasi-Brittle Materials under Dynamic Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064103. doi: 10.11858/gywlxb.20190754
Citation: MING Dehan, OU Zhuocheng, YANG Xiao, DUAN Zhuoping, HUANG Fenglei. Ubiquitiform Crack of Quasi-Brittle Materials under Dynamic Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064103. doi: 10.11858/gywlxb.20190754

Ubiquitiform Crack of Quasi-Brittle Materials under Dynamic Loading

doi: 10.11858/gywlxb.20190754
  • Received Date: 03 Apr 2019
  • Rev Recd Date: 24 Apr 2019
  • To investigate the ubiquitiformal characteristic of the crack extension path in a heterogeneous quasi-brittle material under the dynamic tensile loadings, a ubiquitiformal model is developed in this paper, and the calculated numerical results for the ubiquitiform complexity are in agreement with the previous experiments. It is found that such a crack extension path is indeed of a ubiquitiform, and its complexity decreases with the increase of the loading strain-rate. Moreover, it is also found that the complexity is independent of the randomness of the spatial distribution of the dynamic tensile load-carrying capacity of the material under consideration, and the complexity decreases with increasing shape parameter m of the Weibull distribution. Thus, this work can be taken as a basis for analyzing further the mechanism as well as the ubiquitiformal characteristic of the crack profile in a quasi-brittle material under the dynamic tensile loadings.

     

  • loading
  • [1]
    MANDELBROT B B, PASSOJA D E, PAULLAY A J. Fractal character of fracture surfaces of metals [J]. Nature, 1984, 308(5961): 721–722. doi: 10.1038/308721a0
    [2]
    王金安, 谢和平. 岩石断裂表面分形测量的尺度效应 [J]. 岩石力学与工程学报, 2000, 19(1): 11–17. doi: 10.3321/j.issn:1000-6915.2000.01.003

    WANG J A, XIE H P. Scale effect on fractal measurement of rock fracture surfaces [J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(1): 11–17. doi: 10.3321/j.issn:1000-6915.2000.01.003
    [3]
    裴建良, 苏立, 刘建锋, 等. 层状大理岩间接拉伸试验及断口形貌和断裂机理分析 [J]. 四川大学学报(工程科学版), 2014, 46(4): 39–45.

    PEI J L, SU L, LIU J F, et al. Indirect tensile test of layered marble and analysis of fracture morphology and mechanism [J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(4): 39–45.
    [4]
    SAGAR R V, PRASAD B K R. Fracture analysis of concrete using singular fractal functions with lattice beam network and confirmation with acoustic emission study [J]. Theoretical and Applied Fracture Mechanics, 2011, 55(3): 192–205. doi: 10.1016/j.tafmec.2011.07.003
    [5]
    党发宁, 方建银, 丁卫华. 基于CT的混凝土试样静动力单轴拉伸破坏裂纹分形特征比较研究 [J]. 岩石力学与工程学报, 2015, 34(Suppl 1): 2922–2928.

    DANG F N, FANG J Y, DING W H. Fractal comparison research of fracture of concrete samples under static and dynamic uniaxial tensile using CT [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 1): 2922–2928.
    [6]
    LIANG H, PAN F S, CHEN Y M, et al. Influence of the strain rates on tensile properties and fracture interfaces for Mg-Al alloys containing Y [J]. Advanced Materials Research, 2011, 284/286: 1671–1677. doi: 10.4028/www.scientific.net/AMR.284-286.1671
    [7]
    OU Z C, LI G Y, DUAN Z P, et al. Ubiquitiform in applied mechanics [J]. Journal of Theoretical and Applied Mechanics, 2014, 52: 37–46.
    [8]
    CARPINTERI A. Fractal nature of material microstructure and size effects on apparent mechanical properties [J]. Mechanics of Materials, 1994, 18(2): 89–101. doi: 10.1016/0167-6636(94)00008-5
    [9]
    CARPINTERI A, PUZZI S. Self-similarity in concrete fracture: size-scale effects and transition between different collapse mechanisms [J]. International Journal of Fracture, 2008, 154(1/2): 167–175.
    [10]
    BORODICH F M. Some fractal models of fracture [J]. Journal of the Mechanics and Physics of Solids, 1997, 45(2): 239–259. doi: 10.1016/S0022-5096(96)00080-4
    [11]
    LI G Y, OU Z C, XIE R, et al. A ubiquitiformal one-dimensional steady-state conduction model for a cellular material rod [J]. International Journal of Thermophysics, 2016, 37(4): 1–13.
    [12]
    OU Z C, YANG M, LI G Y, et al. Ubiquitiformal fracture energy [J]. Journal of Theoretical and Applied Mechanics, 2017, 55(3): 1101–1108.
    [13]
    LI J Y, OU Z C, TONG Y, et al. A statistical model for ubiquitiformal crack extension in quasi-brittle materials [J]. Acta Mechanica, 2017, 228(7): 1–8.
    [14]
    WEIBULL W. A statistical distribution of wide applicability [J]. Journal of Applied Mechanics, 1951, 18(2): 293–297.
    [15]
    OU Z C, DUAN Z P, HUANG F L. Analytical approach to the strain rate effect on the dynamic tensile strength of brittle materials [J]. International Journal of Impact Engineering, 2010, 37(8): 942–945. doi: 10.1016/j.ijimpeng.2010.02.003
    [16]
    WANG Y D, DAN W J, XU Y F, et al. Fractal and morphological characteristics of single marble particle crushing in uniaxial compression tests [J]. Advances in Materials Science and Engineering, 2015, 2015(1): 1–10.
    [17]
    ISA K, ABU A R K, SOUSA R L. Computational modelling of fracture propagation in rocks using a coupled elastic-plasticity-damage model [J]. Mathematical Problems in Engineering, 2016, 2016: 3231092.
    [18]
    GRANGE S, FORQUIN P, MENCACCI S, et al. On the dynamic fragmentation of two limestones using edge-on impact tests [J]. International Journal of Impact Engineering, 2008, 35(9): 977–991. doi: 10.1016/j.ijimpeng.2007.07.006
    [19]
    ZHU W C, TANG C A. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model [J]. Construction and Building Materials, 2002, 16(8): 453–463. doi: 10.1016/S0950-0618(02)00096-X
    [20]
    PETROV Y, KAZARINOV N, BRATOV V. Dynamic crack propagation: quasistatic and impact loading [J]. Procedia Structural Integrity, 2016, 2: 389–394. doi: 10.1016/j.prostr.2016.06.050
    [21]
    LIU L G, OU Z C, DUAN Z P, et al. Strain-rate effects on deflection/penetration of crack terminating perpendicular to bimaterial interface under dynamic loadings [J]. International Journal of Fracture, 2011, 167(2): 135–145. doi: 10.1007/s10704-010-9533-2
    [22]
    PEI C W, YAO Y, CHEN D G, et al. Experimental study of the tensile bond strength in concrete aggregate-paste interfacial transition zone [J]. Applied Mechanics and Materials, 2012, 193/194: 1384–1388. doi: 10.4028/www.scientific.net/AMM.193-194.1384
    [23]
    WONG T F, WONG R H C, CHAU K T, et al. Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock [J]. Mechanics of Materials, 2006, 38(7): 664–681. doi: 10.1016/j.mechmat.2005.12.002
    [24]
    SMIRNOV I, KONSTANTINOV A, BRAGOV A, et al. The structural temporal approach to dynamic and quasi-static strength of rocks and concrete [J]. Procedia Structural Integrity, 2017, 6: 34–39. doi: 10.1016/j.prostr.2017.11.006
    [25]
    谢和平, 高峰, 周宏伟, 等. 岩石断裂和破碎的分形研究 [J]. 防灾减灾工程学报, 2003, 23(4): 1–9.

    XIE H P, GAO F, ZHOU H W, et al. Fractal fracture and fragmentation in rocks [J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(4): 1–9.
    [26]
    SAKELLARIOU M. On the fractal character of rock surfaces [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1991, 28(6): 527–533.
    [27]
    YAN D, LIN G. Dynamic properties of concrete in direct tension [J]. Cement and Concrete Research, 2006, 36(7): 1371–1378. doi: 10.1016/j.cemconres.2006.03.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(8609) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return