Citation: | WANG Ya, JIANG Lingjie, DENG Xiaolong. Numerical Study of the Interaction between High-Speed Gas and Elliptical Column Cloud[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 012301. doi: 10.11858/gywlxb.20190748 |
[1] |
罗志全. 核心坍缩型超新星的相关物理过程及爆发机制的研究 [D]. 成都: 四川大学, 2006.
LUO Z Q. Research on the physical process and explosion mechanism of core-collapse supernova [D]. Chengdu: Sichuan University, 2006.
|
[2] |
CHOJNICKI K, CLARKE A B, PHILLIPS J C. A shock-tube investigation of the dynamics of gas-particle mixtures: implications for explosive volcanic eruptions [J]. Geophysical Research Letters, 2006, 33(15): 292–306.
|
[3] |
张莉聪, 徐景德, 吴兵, 等. 甲烷-煤尘爆炸波与障碍物相互作用的数值研究 [J]. 中国安全科学学报, 2004(8): 85–88.
ZHANG L C, XU J D, WU B, et al. Study on numerical value of reaction between barrier and explosion wave of methane-coal dust [J]. China Safety Science Journal, 2004(8): 85–88.
|
[4] |
QUINLAN N J, KENDALL M A F, BELLHOUSE B J, et al. Investigations of gas and particle dynamics in first generation needle-free drug delivery devices [J]. Shock Waves, 2001, 10(6): 395–404. doi: 10.1007/PL00004052
|
[5] |
张晓立, 解立峰, 洪滔, 等. 激波管驱动石英砂颗粒抛洒的数值模拟 [J]. 高压物理学报, 2014, 28(1): 97–102. doi: 10.11858/gywlxb.2014.01.016
ZHANG X L, XIE L F, HONG T, et al. Numerical simulation of quartz sand dispersion under shock tube loading [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 97–102. doi: 10.11858/gywlxb.2014.01.016
|
[6] |
ZHANG F, FROST D L, THIBAULT P A, et al. Explosive dispersal of solid particles [J]. Shock Waves, 2001, 10(6): 431–443. doi: 10.1007/PL00004050
|
[7] |
RUDINGER G. Fundamentals of gas-particle flow [M]. Elsevier Scientific Publishing Company, 1980.
|
[8] |
REGELE J D, RABINOVITCH J, COLONIUS T, et al. Unsteady effects in dense, high speed, particle laden flows [J]. International Journal of Multiphase Flow, 2014, 61: 1–13. doi: 10.1016/j.ijmultiphaseflow.2013.12.007
|
[9] |
ZAREI Z, FROST D L, TIMOFEEV E V. Numerical modelling of the entrainment of particles in inviscid supersonic flow [J]. Shock Waves, 2011, 21(4): 341–355. doi: 10.1007/s00193-011-0311-5
|
[10] |
JACOBS G B, DON W S, DITTMANN T. High-order resolution Eulerian-Lagrangian simulations of particle dispersion in the accelerated flow behind a moving shock [J]. Theoretical and Computational Fluid Dynamics, 2012, 26(1/2/3/4): 37–50. doi: 10.1007/s00162-010-0214-6
|
[11] |
ROGUE X, RODRIGUEZ G, HAAS J F, et al. Experimental and numerical investigation of the shock-induced fluidization of a particles bed [J]. Shock Waves, 1998, 8(1): 29–45. doi: 10.1007/s001930050096
|
[12] |
WAGNER J L, BERESH S J, KEARNEY S P, et al. A multiphase shock tube for shock wave interactions with dense particle fields [J]. Experiments in Fluids, 2012, 52(6): 1507–1517. doi: 10.1007/s00348-012-1272-x
|
[13] |
WAGNER J L, KEARNEY S P, BERESH S J, et al. Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain [J]. Experiments in Fluids, 2015, 56(12): 213. doi: 10.1007/s00348-015-2087-3
|
[14] |
THEOFANOUS T G, MITKIN V, CHANG C H. The dynamics of dense particle clouds subjected to shock waves. Part 1. experiments and scaling laws [J]. Journal of Fluid Mechanics, 2016, 792: 658–681. doi: 10.1017/jfm.2016.97
|
[15] |
THEOFANOUS T G, CHANG C H. The dynamics of dense particle clouds subjected to shock waves. Part 2. modeling/numerical issues and the way forward [J]. International Journal of Multiphase Flow, 2017, 89: 177–206. doi: 10.1016/j.ijmultiphaseflow.2016.10.004
|
[16] |
WANG L P, ROSA B, GAO H, et al. Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond [J]. International Journal of Multiphase Flow, 2009, 35(9): 854–867. doi: 10.1016/j.ijmultiphaseflow.2009.02.012
|
[17] |
LING Y, WAGNER J L, BERESH S J, et al. Interaction of a planar shock wave with a dense particle curtain: modeling and experiments [J]. Physics of Fluids, 2012, 24(11): 113301. doi: 10.1063/1.4768815
|
[18] |
HU H H. Direct simulation of flows of solid-liquid mixtures [J]. International Journal of Multiphase Flow, 1996, 22(2): 335–352. doi: 10.1016/0301-9322(95)00068-2
|
[19] |
XIONG Q, LI B, ZHOU G, et al. Large-scale DNS of gas-solid flows on Mole-8.5 [J]. Chemical Engineering Science, 2012, 71: 422–430. doi: 10.1016/j.ces.2011.10.059
|
[20] |
PICANO F, BREUGEM W P, BRANDT L. Turbulent channel flow of dense suspensions of neutrally buoyant spheres [J]. Journal of Fluid Mechanics, 2015, 764: 463–487. doi: 10.1017/jfm.2014.704
|
[21] |
WANG S, VANELLA M, BALARAS E. A hydrodynamic stress model for simulating turbulence/particle interactions with immersed boundary methods [J]. Journal of Computational Physics, 2019, 382: 240–263. doi: 10.1016/j.jcp.2019.01.010
|
[22] |
ZHU C, YU Z, SHAO X. Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows [J]. Physics of Fluids, 2018, 30(11): 115103. doi: 10.1063/1.5051592
|
[23] |
ZASTAWNY M, MALLOUPPAS G, ZHAO F, et al. Derivation of drag and lift force and torque coefficients for non-spherical particles in flows [J]. International Journal of Multiphase Flow, 2012, 39: 227–239. doi: 10.1016/j.ijmultiphaseflow.2011.09.004
|
[24] |
邹立勇, 廖深飞, 刘金宏, 等. 双椭圆界面Richtmyer-Meshkov流动中的相互干扰效应 [J]. 高压物理学报, 2015, 29(3): 191–198. doi: 10.11858/gywlxb.2015.03.005
ZOU L Y, LIAO S F, LIU J H, et al. Interaction effect of two ellipse Richtmyer-Meshkov flows [J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 191–198. doi: 10.11858/gywlxb.2015.03.005
|
[25] |
JIANG L J, DENG X L, TAO L. DNS study of initial-stage shock-particle curtain interaction [J]. Communications in Computational Physics, 2018, 23(4): 1202–1222.
|
[26] |
STEWART H B, WENDROFF B. Two-phase flow: models and methods [J]. Journal of Computational Physics, 1984, 56(3): 363–409. doi: 10.1016/0021-9991(84)90103-7
|
[27] |
CHANG C H, LIOU M S. A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM(+)-up scheme [J]. Journal of Computational Physics, 2008, 227(10): 5360–5360. doi: 10.1016/j.jcp.2008.01.041
|
[28] |
DENG X, JIANG L, DING Y. Direct numerical simulation of long-term shock-particle curtain interaction [C]//2018 AIAA Aerospace Sciences Meeting. Florida: American Institute of Aeronautics and Astronautics, 2018.
|
[29] |
LIOU M S. Ten years in the making-AUSM-family [C]//15th AIAA Computational Fluid Dynamics Conference, 2001: 2521.
|
[30] |
LIOU MS. A sequel to AUSM, Part II: AUSM+-up for all speeds [J]. Journal of Computational Physics, 2006, 214(1): 137–170. doi: 10.1016/j.jcp.2005.09.020
|
[1] | YANG Huanhuan, ZHANG Enlai, LI Xinzhu, ZOU Liyong. Interface proximity effect on the evolution of a shock-accelerated heavy gas cylinder[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251008 |
[2] | ZHANG Kunyu, CHEN De, WU Hao. Numerical Simulation and Parametric Analysis of High-Pressure Gas-Driven Shock Tube[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 033301. doi: 10.11858/gywlxb.20220704 |
[3] | DENG Yuxuan, ZHANG Xianfeng, FENG Kehua, LIU Chuang, DU Ning, LIU Junwei, LI Pengcheng. Numerical Simulation of Fragmentation Process Driven by Explosion in Elliptical Cross-Section Warhead[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025104. doi: 10.11858/gywlxb.20210856 |
[4] | HUANG Yong, XIE Li-Feng, YE Jing-Fang, LU Chang-Bo, AN Gao-Jun, XIONG Chun-Hua, LI Yong-Jian, XU Chun. Experimental Study on Diesel Fuel Film Dispersed by Shock Wave and High-Speed Airflow[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 227-234. doi: 10.11858/gywlxb.2016.03.008 |
[5] | DUAN Yao-Yong, GUO Yong-Hui, QIU Ai-Ci. Maximum Compression Ratios of Elemental Solids and Corresponding Thermodynamic Quantities on Shock Adiabat[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 136-142. doi: 10.11858/gywlxb.2015.02.008 |
[6] | ZHANG Xiao-Li, XIE Li-Feng, HONG Tao, DONG He-Fei. Numerical Simulation of Quartz Sand Dispersion under Shock Tube Loading[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 97-102. doi: 10.11858/gywlxb.2014.01.016 |
[7] | ZOU Li-Yong, LIU Cang-Li, PANG Yong, LUO Xi-Sheng, BAI Jin-Song, YANG Ji-Ming. A Numerical Study on Interface Evolution and Jet Development of a Shocked SF6 Gas Bubble[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 90-98. doi: 10.11858/gywlxb.2013.01.013 |
[8] | MAO Yong-Jian, LI Yu-Long, CHEN Ying, HUANG Han-Jun, ZHANG Qing-Ping, MIAO Ying-Gang. Numerical Simulation of Cylindrical Shell Loaded by Explosive Rods (Ⅰ): Fluid-Structure Interaction Simulation[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 155-162. doi: 10.11858/gywlxb.2012.02.006 |
[9] | ZHU Yue-Jin, DONG Gang, LIU Yi-Xin, FAN Bao-Chun. Three-Dimensional Numerical Investigation of Deformation and Instability of High-Density Bubble Induced by Incident and Reflected Shock Waves[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 266-272. doi: 10.11858/gywlxb.2012.03.004 |
[10] | GUO Wen-Can, LIU Cang-Li, TAN Duo-Wang, LIU Jin-Hong, ZOU Li-Yong, ZHANG Guang-Sheng. Experimental Investigation on Spherical Bubble Evolution Loaded by a Weak Planar Shock Wave[J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 460-466 . doi: 10.11858/gywlxb.2009.06.010 |
[11] | PEI Xiao-Yang, LI Ping, DONG Yu-Bin. 2D Numerical Simulation of Spallation in Three Steels with the Damage Function Model[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 71-76 . doi: 10.11858/gywlxb.2007.01.012 |
[12] | GUI Ming-Yue, FAN Bao-Chun, DONG Gang, YU Lu-Jun. Numerical Investigations of Detonation Induced by Implosion Flame inResonator Cavity[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 151-156 . doi: 10.11858/gywlxb.2007.02.006 |
[13] | DONG Gang, YE Jing-Fang, FAN Bao-Chun. Experimental and Numerical Investigation of Shock Wave Focusing and Reflection[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 359-364 . doi: 10.11858/gywlxb.2006.04.004 |
[14] | ZHAO He-Yun, KAN Jia-De, WANG Hai, LIU Zuo-Quan. Shock Wave Crystallization of Amorphous Alloys FeSiB, FeMoSiB and FeCuNbSiB[J]. Chinese Journal of High Pressure Physics, 2002, 16(2): 131-136 . doi: 10.11858/gywlxb.2002.02.008 |
[15] | LU Shou-Xiang, QIN You-Hua. Deformation and Breakup of Droplets behind Shock Wave[J]. Chinese Journal of High Pressure Physics, 2000, 14(2): 151-154 . doi: 10.11858/gywlxb.2000.02.012 |
[16] | LIU Ying-Kai, ZHOU Xiao-Feng, LIU Zuo-Quan, HOU De-Dong. Experimental Studies on the Nano-Crystallizations of Amorphous Fe78B13Si9 and FeMoBSi Alloy under Shock Wave[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 230-236 . doi: 10.11858/gywlxb.1999.03.013 |
[17] | ZHANG Ruo-Qi, TANG Wen-Hui, ZHAO Guo-Min. Several Influential Factors on Numerical Simulated Results for the X-Ray Thermal Shock Waves[J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 161-167 . doi: 10.11858/gywlxb.1998.03.001 |
[18] | PENG Chang-Xian, XU Yong-Liang. Numerical Simulation for the Propagation of Thermal Shock Waves Induced in Materials Irradiated by Pulsed Electron Beam[J]. Chinese Journal of High Pressure Physics, 1998, 12(4): 282-290 . doi: 10.11858/gywlxb.1998.04.007 |
[19] | FAN Bao-Chun, CUI Dong-Min, CHEN Qi-Feng. Chemical Reaction Induced by Steady Shock Wave[J]. Chinese Journal of High Pressure Physics, 1997, 11(3): 182-188 . doi: 10.11858/gywlxb.1997.03.004 |
[20] | ZHOU Nan, QIAO Deng-Jiang. Analytical Solutions of One-Dimensional Thermal Shock Wave[J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 124-132 . doi: 10.11858/gywlxb.1995.02.007 |