Volume 34 Issue 1
Jan 2020
Turn off MathJax
Article Contents
WANG Ya, JIANG Lingjie, DENG Xiaolong. Numerical Study of the Interaction between High-Speed Gas and Elliptical Column Cloud[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 012301. doi: 10.11858/gywlxb.20190748
Citation: WANG Ya, JIANG Lingjie, DENG Xiaolong. Numerical Study of the Interaction between High-Speed Gas and Elliptical Column Cloud[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 012301. doi: 10.11858/gywlxb.20190748

Numerical Study of the Interaction between High-Speed Gas and Elliptical Column Cloud

doi: 10.11858/gywlxb.20190748
  • Received Date: 25 Mar 2019
  • Rev Recd Date: 07 May 2019
  • High-speed particle-laden flow has important applications in astronomy, natural disasters, industrial safety, medical industry, and national defense. In this work, a direct numerical simulation method based on the stratified flow model is used to study the interaction between a planar shock wave and an elliptical column cloud. The influence of the aspect ratio and the tilt angle, the distributions of the flow velocity, RMS velocities along x axis, kinetic energy, internal energy, and turbulent kinetic energy are analyzed; energy values in the upstream region, the elliptical column cloud region and the downstream region of the computational domain are quantitatively analyzed. The 1-D volume-average model is improved for elliptical columns. Based on this model, the appropriate artificial effective drag coefficients are decided by fitting the positions of the reflected shock and the transmitted shock from the direct numerical simulation results, and the distribution of the optimal artificial effective drag coefficients is also discussed.

     

  • loading
  • [1]
    罗志全. 核心坍缩型超新星的相关物理过程及爆发机制的研究 [D]. 成都: 四川大学, 2006.

    LUO Z Q. Research on the physical process and explosion mechanism of core-collapse supernova [D]. Chengdu: Sichuan University, 2006.
    [2]
    CHOJNICKI K, CLARKE A B, PHILLIPS J C. A shock-tube investigation of the dynamics of gas-particle mixtures: implications for explosive volcanic eruptions [J]. Geophysical Research Letters, 2006, 33(15): 292–306.
    [3]
    张莉聪, 徐景德, 吴兵, 等. 甲烷-煤尘爆炸波与障碍物相互作用的数值研究 [J]. 中国安全科学学报, 2004(8): 85–88.

    ZHANG L C, XU J D, WU B, et al. Study on numerical value of reaction between barrier and explosion wave of methane-coal dust [J]. China Safety Science Journal, 2004(8): 85–88.
    [4]
    QUINLAN N J, KENDALL M A F, BELLHOUSE B J, et al. Investigations of gas and particle dynamics in first generation needle-free drug delivery devices [J]. Shock Waves, 2001, 10(6): 395–404. doi: 10.1007/PL00004052
    [5]
    张晓立, 解立峰, 洪滔, 等. 激波管驱动石英砂颗粒抛洒的数值模拟 [J]. 高压物理学报, 2014, 28(1): 97–102. doi: 10.11858/gywlxb.2014.01.016

    ZHANG X L, XIE L F, HONG T, et al. Numerical simulation of quartz sand dispersion under shock tube loading [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 97–102. doi: 10.11858/gywlxb.2014.01.016
    [6]
    ZHANG F, FROST D L, THIBAULT P A, et al. Explosive dispersal of solid particles [J]. Shock Waves, 2001, 10(6): 431–443. doi: 10.1007/PL00004050
    [7]
    RUDINGER G. Fundamentals of gas-particle flow [M]. Elsevier Scientific Publishing Company, 1980.
    [8]
    REGELE J D, RABINOVITCH J, COLONIUS T, et al. Unsteady effects in dense, high speed, particle laden flows [J]. International Journal of Multiphase Flow, 2014, 61: 1–13. doi: 10.1016/j.ijmultiphaseflow.2013.12.007
    [9]
    ZAREI Z, FROST D L, TIMOFEEV E V. Numerical modelling of the entrainment of particles in inviscid supersonic flow [J]. Shock Waves, 2011, 21(4): 341–355. doi: 10.1007/s00193-011-0311-5
    [10]
    JACOBS G B, DON W S, DITTMANN T. High-order resolution Eulerian-Lagrangian simulations of particle dispersion in the accelerated flow behind a moving shock [J]. Theoretical and Computational Fluid Dynamics, 2012, 26(1/2/3/4): 37–50. doi: 10.1007/s00162-010-0214-6
    [11]
    ROGUE X, RODRIGUEZ G, HAAS J F, et al. Experimental and numerical investigation of the shock-induced fluidization of a particles bed [J]. Shock Waves, 1998, 8(1): 29–45. doi: 10.1007/s001930050096
    [12]
    WAGNER J L, BERESH S J, KEARNEY S P, et al. A multiphase shock tube for shock wave interactions with dense particle fields [J]. Experiments in Fluids, 2012, 52(6): 1507–1517. doi: 10.1007/s00348-012-1272-x
    [13]
    WAGNER J L, KEARNEY S P, BERESH S J, et al. Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain [J]. Experiments in Fluids, 2015, 56(12): 213. doi: 10.1007/s00348-015-2087-3
    [14]
    THEOFANOUS T G, MITKIN V, CHANG C H. The dynamics of dense particle clouds subjected to shock waves. Part 1. experiments and scaling laws [J]. Journal of Fluid Mechanics, 2016, 792: 658–681. doi: 10.1017/jfm.2016.97
    [15]
    THEOFANOUS T G, CHANG C H. The dynamics of dense particle clouds subjected to shock waves. Part 2. modeling/numerical issues and the way forward [J]. International Journal of Multiphase Flow, 2017, 89: 177–206. doi: 10.1016/j.ijmultiphaseflow.2016.10.004
    [16]
    WANG L P, ROSA B, GAO H, et al. Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond [J]. International Journal of Multiphase Flow, 2009, 35(9): 854–867. doi: 10.1016/j.ijmultiphaseflow.2009.02.012
    [17]
    LING Y, WAGNER J L, BERESH S J, et al. Interaction of a planar shock wave with a dense particle curtain: modeling and experiments [J]. Physics of Fluids, 2012, 24(11): 113301. doi: 10.1063/1.4768815
    [18]
    HU H H. Direct simulation of flows of solid-liquid mixtures [J]. International Journal of Multiphase Flow, 1996, 22(2): 335–352. doi: 10.1016/0301-9322(95)00068-2
    [19]
    XIONG Q, LI B, ZHOU G, et al. Large-scale DNS of gas-solid flows on Mole-8.5 [J]. Chemical Engineering Science, 2012, 71: 422–430. doi: 10.1016/j.ces.2011.10.059
    [20]
    PICANO F, BREUGEM W P, BRANDT L. Turbulent channel flow of dense suspensions of neutrally buoyant spheres [J]. Journal of Fluid Mechanics, 2015, 764: 463–487. doi: 10.1017/jfm.2014.704
    [21]
    WANG S, VANELLA M, BALARAS E. A hydrodynamic stress model for simulating turbulence/particle interactions with immersed boundary methods [J]. Journal of Computational Physics, 2019, 382: 240–263. doi: 10.1016/j.jcp.2019.01.010
    [22]
    ZHU C, YU Z, SHAO X. Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows [J]. Physics of Fluids, 2018, 30(11): 115103. doi: 10.1063/1.5051592
    [23]
    ZASTAWNY M, MALLOUPPAS G, ZHAO F, et al. Derivation of drag and lift force and torque coefficients for non-spherical particles in flows [J]. International Journal of Multiphase Flow, 2012, 39: 227–239. doi: 10.1016/j.ijmultiphaseflow.2011.09.004
    [24]
    邹立勇, 廖深飞, 刘金宏, 等. 双椭圆界面Richtmyer-Meshkov流动中的相互干扰效应 [J]. 高压物理学报, 2015, 29(3): 191–198. doi: 10.11858/gywlxb.2015.03.005

    ZOU L Y, LIAO S F, LIU J H, et al. Interaction effect of two ellipse Richtmyer-Meshkov flows [J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 191–198. doi: 10.11858/gywlxb.2015.03.005
    [25]
    JIANG L J, DENG X L, TAO L. DNS study of initial-stage shock-particle curtain interaction [J]. Communications in Computational Physics, 2018, 23(4): 1202–1222.
    [26]
    STEWART H B, WENDROFF B. Two-phase flow: models and methods [J]. Journal of Computational Physics, 1984, 56(3): 363–409. doi: 10.1016/0021-9991(84)90103-7
    [27]
    CHANG C H, LIOU M S. A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM(+)-up scheme [J]. Journal of Computational Physics, 2008, 227(10): 5360–5360. doi: 10.1016/j.jcp.2008.01.041
    [28]
    DENG X, JIANG L, DING Y. Direct numerical simulation of long-term shock-particle curtain interaction [C]//2018 AIAA Aerospace Sciences Meeting. Florida: American Institute of Aeronautics and Astronautics, 2018.
    [29]
    LIOU M S. Ten years in the making-AUSM-family [C]//15th AIAA Computational Fluid Dynamics Conference, 2001: 2521.
    [30]
    LIOU MS. A sequel to AUSM, Part II: AUSM+-up for all speeds [J]. Journal of Computational Physics, 2006, 214(1): 137–170. doi: 10.1016/j.jcp.2005.09.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(7588) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return