
Citation: | QIN Rui. New Developments of Time-Dependent Density Functional Theory and Its Applications[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030101. doi: 10.11858/gywlxb.20190747 |
球体的冲击破碎是颗粒物质力学的基本问题。球体结构材料广泛存在于日常生活和工程应用中,例如煤粒破碎[1-2]、落石灾害[3]、化工产品[4]等。研究球体材料在冲击载荷下的破碎,对于提高颗粒物质的加工技术、节约能源、促进经济发展、有效监控及预防自然灾害等具有重要价值。
早期国内外研究人员对单颗粒的冲击破碎开展了大量的实验研究,研究的重点是颗粒的临界破碎速度、颗粒的破碎模式、碎片形貌以及碎块的统计特征等。Andrews等[5-6]对钠钙玻璃球和陶瓷球进行了研究,在临界速度下,球体从刚性靶板回弹;超过临界速度后,钠钙玻璃球碎裂为大量尺寸不均的细小碎片,而陶瓷球则碎裂为若干大小均匀形似“月牙状”的碎块,并将钠钙玻璃球体破碎归因于球体压缩端的剪切应力,而将陶瓷球体碎裂归因于球体中部的冲击拉伸应力。Salman等[7-9]对不同类型材料和大小的脆性球体进行试验,结果表明大部分脆性材料的破坏模式是相似的,即:在中低速下,球体的局部裂纹扩展导致局部破碎,在撞击端形成压缩平台;在高速下,球体碎裂为大量难以识别的粉状碎片。Chau[10]、Wu[11]等根据冲击动能的转换分析了脆性球体破碎后碎块的统计特征。
在数值计算方面,易洪昇等[12]使用ABAQUS软件模拟了冲击过程中的球体内部应力情况,由于颗粒破碎涉及大变形,采用有限元方法会出现网格畸变问题,因此不适合模拟大变形和损伤现象。离散元方法(Discrete element method, DEM)能够满足岩体工程中破裂和裂纹发展等问题的研究,适合于从本质上研究固体介质的力学特性[13]。Shen等[14]利用离散元软件分析了球形岩石在不同应变率情况下碎块特征、碎块数量、损伤率等的变化情况。Carmona等[15]采用离散元方法研究了球体碎裂过程中裂纹的扩展过程,发现碎裂的大块碎片质量符合两参数的Weibull分布。
以石英玻璃球作为典型的脆性球体,开展了较广泛冲击速度下石英玻璃球撞击刚性壁的破坏现象研究,利用离散元数值软件PFC3D分析了石英玻璃球在不同撞击速度下的撞击碎裂过程。
实验采用高速气枪作为石英玻璃球的加载发射装置,撞击区域使用碳化钨材料作为近似刚性靶板,碳化钨的弹性模量为720 GPa,密度为15.6 g/cm3,泊松比为0.21。碳化钨周围附有厚壁钢块,如图1所示。采用Kirana超高速摄像机记录球体的破碎过程,拍摄幅频为2×105帧每秒,高速相机采用断路方式触发,触发线设置在气枪的出口位置。在球体撞击区域的外围设计了一个有机玻璃防护装置用于收集碎片。
高速气枪出口距离靶板250 mm,通过圆柱形长杆调节高速气枪和靶板的垂直度,从而实现玻璃球的正撞破坏。通过水平放置和位于球体上方放置的高速相机,实验观察石英玻璃球的飞行姿态,结果表明玻璃球体未发生明显偏转,撞击靶板位置为初始预设位置。根据超高速相机拍摄可获得玻璃球体的飞行时间,从而确定玻璃球体飞行的平均速度,近似等效为球体撞击速度。
实验试件采用昊天玻璃制品有限公司生产的超纯石英玻璃球,其SiO2的质量分数大于99.99%。球体直径为(10.00±0.02)mm,质量为(1.150±0.015)g,具有良好的透光性,且表面无明显缺陷。
为了研究玻璃球的临界冲击破碎速度,在低速下开展了大量的实验。实验结果表明:当石英玻璃球以11.87 m/s撞击刚性靶板时,碰撞为近似弹性碰撞,球体以略低于原速(回弹速度10.25 m/s)从刚性壁回弹,除却撞击点应力集中破坏外,球体内部没有产生宏观可见裂纹。石英玻璃球撞击前和回弹后如图2所示。
图3是冲击速度为78 m/s的冲击破碎过程。从图3可以看出,球体的破碎可以分为3个阶段。在初始阶段,撞击端首先发生破坏,形成经过子午面的宏观裂纹,同时形成细条状碎片,这些碎片以撞击点为中心向四周扩散,而在远离撞击端部分还保持相对完整;随着撞击的持续进行,在撞击端的碎片继续向四周运动,在远离撞击端的部分产生“龟甲状”的裂纹,并最终碎裂为若干“圆锥状”的碎块。
当冲击速度为35 m/s时,球体从刚性壁回弹,在撞击端产生了一些细小的碎片,如图4(a)所示。图5(a)表明,实验回收后的碎片存在3个破坏区域,分别为压缩破碎区、表面剥落区以及剪切破坏区。其中压缩破碎区是一个圆锥状的区域,这块区域的石英玻璃已不具备透光性,说明这一区域的石英玻璃发生了剧烈的压缩破碎,但是这些碎块还有部分镶嵌在球体上并没有从球体上脱落。在压缩破碎区的周围是一个环形的表面剥落区,受到表面波作用一些片状的碎片从球体上剥落,产生层片状的碎片。在球体内部,石英玻璃的折光性发生了改变,说明在剪切力的作用下石英玻璃内部产生剪切裂纹带,剪切裂纹带由压缩破碎区开始起裂,沿着子午面由撞击端向试件内部扩展。
当冲击速度为50 m/s时,从球体的透光性可以看出,球体完全碎裂为若干碎块,如图4(b)所示。在撞击端同样会出现类似于35 m/s时的压缩破碎现象,并且涉及的范围更大。由于冲击动能的增加,剪切破碎区完全贯穿了球体的子午面,最终导致石英玻璃球碎裂成若干类似于“月牙状”的碎块,如图5(b)所示。
当冲击速度为78 m/s时,与上述几种破碎情况完全不同,石英玻璃球不再从刚性壁回弹,而是发生了“坍塌式”的破碎,如图4(c)所示。在撞击端,产生大量细小的碎块,在球体的另一端表面有许多类似于“经线形”和“纬线形”的宏观裂纹,最终产生大量类似于“龟甲状”的碎片,内部也产生大量细小碎片,如图5(c)所示。
当冲击速度为135 m/s时,发生“蘑菇云”似的破碎现象,如图4(d)所示。产生的碎片更加细小,在远离撞击端的地方发生明显的“层裂”现象。球体在高速撞击过程中碎裂为极细小的碎片,透明球体不易观察裂纹发展,将石英玻璃球表面涂黑,有利于观测球体表面裂纹扩展。由图5(d)可知,随着速度的增加,球体内部破碎更为剧烈,产生大量粉末状细小碎片。
综上所述,动态冲击下石英玻璃球的破坏形式主要有4种特征:(1)局部破碎,在球体上形成3个破碎区域;(2)中心劈裂,沿着冲击轴线碎裂为类似于“月牙状”的碎片;(3)坍塌破坏,石英玻璃球整体破碎,碎裂为若干碎块;(4)层裂破坏,在远离撞击端的地方产生“蘑菇云”似的“层裂”破坏。
选择目前离散元中使用广泛的平行黏结模型(Linear parallel bond mode)。平行黏结模型本质上是用一层线性的黏结体将相互重叠的颗粒绑定起来,这些黏结的颗粒能很好地模拟岩石、玻璃等脆性材料的压缩破坏过程[16]。
为了使模型具有较高的密实度,将模型中的孔隙率设定为0.2,最大颗粒与最小颗粒的粒径比为3∶2。颗粒间的摩擦系数对材料的宏观参数影响不大[17],故取经验值0.577。
根据文献[18-19]的标定方法,通过单轴压缩标定了模型的弹性模量、泊松比和抗压强度,通过单轴拉伸标定抗拉强度,由三点弯标定弯曲强度,带缺口的三点弯标定断裂韧性和颗粒半径。最终得到的主要微观参数如表1所示。标定的宏观参数如表2所示,得到石英玻璃的宏观参数与制造商提供的材料参数基本一致,因此可以用于模拟石英玻璃的冲击破碎。
Effective modulus of linear contact/GPa | Normal to shear stiffness ratio of linear contact | Porosity | Minimum radius of particles/mm | Size ratio of maximum and minimum particles | Tensile strength of contact/MPa | Shear strength of contact/MPa |
55 | 2.9 | 0.2 | 0.1 | 1.5 | 300 | 600 |
Method | Equivalent density/(kg·m–3) | Elastic modulus/GPa | Poisson’s ratio | Compressive strength/MPa | Tensile strength/MPa | Bending strength/MPa | Fracture toughness/(N·m–3/2) |
Manufacture provide | 2.203 | 77.8 | 0.170 | 860 | 50 | 67.0 | 0.78 |
DEM numerical simulation | 2.203 | 78.0 | 0.172 | 798 | 50 | 67.4 | 0.85 |
根据上述标定的离散元微观参数建立与实验同尺寸的几何模型。采用刚性墙面模拟实验中的刚性壁,在模拟初始时刻,给所有颗粒施加垂直撞击刚性壁的速度,使其匀速撞击刚性壁。
图6是球体以78 m/s撞击刚性壁的过程。模拟中不同颜色代表的是碰撞过程中产生的不同碎块。对比图3和图6可知,模拟与实验吻合较好,模拟中玻璃球的破坏过程存在明显的时序性。在初始时刻,在撞击端发生局部的破碎,产生细小的碎片,同时裂纹向远离撞击端的地方传播;随着撞击的进行,撞击端产生的碎片向外运动,远离撞击端的地方碎裂为较大的锥形碎块,当撞击端处的细小碎片运动到更远处时,这些较大的锥形碎块以一定的速度继续撞击刚性壁。
球体以78 m/s撞击刚性壁的过程中,球体速度(左端粒子平均速度)、球体内部裂纹数量(粒子之间的力键)以及球体撞击力的时程曲线如图7所示。石英玻璃球撞击破碎过程大致可分为3个阶段:第1阶段,可近似为弹性压缩过程,球体所受到的冲击载荷也近似线性增加,大约经历
图8为在不同速度下石英玻璃球速度随时间变化的曲线。图8(a)显示了撞击速度低于临界破碎速度时球体速度的变化过程。可以看出,球体撞击靶板后匀速下降,最终几乎以原速从靶板回弹。图8(b)显示了撞击速度高于临界破碎速度时球体速度的变化过程。可以看出,球体左端粒子在撞击刚性壁后平均速度急剧下降并保留部分残余速度,撞击速度越大,速度下降越快,残余速度也越大。球体左端粒子以残余速度自由飞行,石英玻璃球撞击端(右端粒子)完全破碎,左端粒子在向右运动过程中没有任何阻力,将球体匀速运动部分对时间积分,发现球体的运动距离均约为球体直径的1/2。
图9给出了0~300 m/s撞击速度下石英玻璃球撞击力随撞击速度的变化规律。从图9可以看出,撞击速度为20 m/s左右时为撞击力增长规律的临界转折点,此前球体未产生明显破碎,此后球体破碎使得撞击力上涨趋势大幅衰减。
在临界转折速度前,石英玻璃球撞击刚性靶板过程可近似认为是弹性碰撞,通过Hertz接触理论可得弹性碰撞接触力[20]
Pm=(53πρ)35(34KI)−25V65R2 |
(1) |
式中:
图10给出了临界转折速度附近石英玻璃球撞击力随撞击速度的变化规律。从图10可以看出:当速度低于临界转折速度时,球体不破碎,内部几乎不产生裂纹,球体整体近似弹性碰撞,Hertz接触理论可以较好地预测石英玻璃球的撞击力;而速度高于临界转折速度时,球体发生破碎,不再具有球体整体性,破碎过程将卸载撞击力,并消耗部分能量,飞散的碎片也将带走大量动能;随着冲击速度的增加,石英玻璃球的极限撞击将等效于流体撞击。
冲击速度在临界破坏速度下为弹性碰撞,球体以略低于原速从刚性壁回弹,除却撞击点应力集中破坏外,球体内部没有产生宏观可见裂纹。低速碰撞时,球体呈现“压缩破碎区-表面剥落区-剪切破坏区”的破坏结构,剪切裂纹沿着子午面由撞击端向试件内部扩展,并还不足以形成碎片;中速碰撞时,由于剪切破坏区充分扩展,致使球体碎裂为若干“月牙状”的碎块;高速碰撞时,石英玻璃球发生坍塌式破碎,表面产生大量类似于“龟甲状”的碎片,内部也产生大量细小碎片;当速度更高时,在远离撞击端有明显的层裂现象产生,球体破碎产生大量粉末状碎片。
离散元软件PFC3D再现了石英玻璃球撞击刚性壁的过程,球体在高速碰撞下破碎可以分为弹性压缩、整体破碎和二次撞击3个阶段。石英玻璃球撞击力随撞击速度呈两段式增长,在球体碎裂前,撞击过程近似为弹性碰撞过程,Hertz接触理论可以较好地描述其撞击力,在球体碎裂后,破碎过程将卸载撞击力,并消耗部分能量,飞散的碎片也将带走大量动能,撞击力远低于Hertz接触理论值,并且随着撞击速度增大,偏差越大。
[1] |
DIRAC P A M. Quantum mechanics of many-electron systems [J]. Proceedings of the Royal Society of London Series A, 1929, 123(792): 714–733. doi: 10.1098/rspa.1929.0094
|
[2] |
HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864–B871. doi: 10.1103/PhysRev.136.B864
|
[3] |
KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
|
[4] |
BLOCH F. Bremsvermögen von Atomen mit mehreren Elektronen [J]. Zeitschrift für Physik A Hadrons and Nuclei, 1933, 81(5): 363–376.
|
[5] |
PEUCKERT V. A new approximation method for electron systems [J]. Journal of Physics C: Solid State Physics, 1978, 11(24): 4945–4956. doi: 10.1088/0022-3719/11/24/023
|
[6] |
ZANGWILL A, SOVEN P. Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases [J]. Physical Review A, 1980, 21(5): 1561. doi: 10.1103/PhysRevA.21.1561
|
[7] |
DEB B M, GHOSH S K. Schrödinger fluid dynamics of many-electron systems in a time-dependent density-functional framework [J]. The Journal of Chemical Physics, 1982, 77(1): 342–348. doi: 10.1063/1.443611
|
[8] |
GHOSH S K, DEB B M. Dynamic polarizability of many-electron systems within a time-dependent density-functional theory [J]. Chemical Physics, 1982, 71(2): 295–306. doi: 10.1016/0301-0104(82)87030-4
|
[9] |
GHOSH S K, DEB B M. A density-functional calculation of dynamic dipole polarizabilities of noble gas atoms [J]. Theoretica Chimica Acta, 1983, 62(3): 209–217. doi: 10.1007/BF00548835
|
[10] |
GHOSH S K, DEB B M. A simple density-functional calculation of frequency-dependent multipole polarizabilities of noble gas atoms [J]. Journal of Molecular Structure: THEOCHEM, 1983, 103: 163–176. doi: 10.1016/0166-1280(83)85017-9
|
[11] |
BARTOLOTTI L J. Time-dependent extension of the Hohenberg-Kohn-Levy energy-density functional [J]. Physical Review A, 1981, 24(4): 1661–1667. doi: 10.1103/PhysRevA.24.1661
|
[12] |
BARTOLOTTI L J. Time-dependent Kohn-Sham density-functional theory [J]. Physical Review A, 1982, 26(4): 2243–2244. doi: 10.1103/PhysRevA.26.2243
|
[13] |
BARTOLOTTI L J. Variation-perturbation theory within a time-dependent Kohn-Sham formalism: an application to the determination of multipole polarizabilities, spectral sums, and dispersion coefficients [J]. The Journal of Chemical Physics, 1984, 80(11): 5687–5695. doi: 10.1063/1.446637
|
[14] |
BARTOLOTTI L J. Velocity form of the Kohn-Sham frequency-dependent polarizability equations [J]. Physical Review A, 1987, 36(9): 4492–4493. doi: 10.1103/PhysRevA.36.4492
|
[15] |
RUNGE E, GROSS E K U. Density-functional theory for time-dependent systems [J]. Physical Review Letters, 1984, 52(12): 997–1000. doi: 10.1103/PhysRevLett.52.997
|
[16] |
LEVY M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem [J]. Proceedings of the National Academy of Sciences, 1979, 76(12): 6062–6065. doi: 10.1073/pnas.76.12.6062
|
[17] |
LIEB E H. Density functionals for Coulomb systems [J]. International Journal of Quantum Chemistry, 1983, 24: 243–277. doi: 10.1002/(ISSN)1097-461X
|
[18] |
VAN LEEUWEN R. Mapping from densities to potentials in time-dependent density-functional theory [J]. Physical Review Letters, 1999, 82(19): 3863–3866. doi: 10.1103/PhysRevLett.82.3863
|
[19] |
RUGGENTHALER M, GIESBERTZ K J H, PENZ M, et al. Density-potential mappings in quantum dynamics [J]. Physical Review A, 2012, 85(5): 052504. doi: 10.1103/PhysRevA.85.052504
|
[20] |
RUGGENTHALER M, VAN LEEUWEN R. Global fixed-point proof of time-dependent density-functional theory [J]. EPL (Europhysics Letters), 2011, 95(1): 13001. doi: 10.1209/0295-5075/95/13001
|
[21] |
ULLRICH C A. Time-dependent density-functional theory: concepts and applications [M]. OUP Oxford, 2011.
|
[22] |
GIULIANI G, VIGNALE G. Quantum theory of the electron liquid [M]. Cambridge: Cambridge University Press, 2005.
|
[23] |
ULLRICH C A, YANG Z. A brief compendium of time-dependent density functional theory [J]. Brazilian Journal of Physics, 2014, 44(1): 154–188. doi: 10.1007/s13538-013-0141-2
|
[24] |
GROSS E K U, KOHN W. Local density-functional theory of frequency-dependent linear response [J]. Physical Review Letters, 1985, 55(26): 2850–2852. doi: 10.1103/PhysRevLett.55.2850
|
[25] |
CASIDA M E. Time-dependent density functional response theory for molecules [M]//Recent Advances in Computational Chemistry. World Scientific, 1995: 155–192.
|
[26] |
HIRATA S, HEAD-GORDON M. Time-dependent density functional theory within the Tamm-Dancoff approximation [J]. Chemical Physics Letters, 1999, 314(3/4): 291–299.
|
[27] |
CASTRO A, MARQUES M A L, RUBIO A. Propagators for the time-dependent Kohn-Sham equations [J]. The Journal of Chemical Physics, 2004, 121(8): 3425–3433. doi: 10.1063/1.1774980
|
[28] |
BURNUS T, MARQUES M A L, GROSS E K U. Time-dependent electron localization function [J]. Physical Review A, 2005, 71(1): 010501. doi: 10.1103/PhysRevA.71.010501
|
[29] |
POHL A, REINHARD P G, SURAUD E. Towards single-particle spectroscopy of small metal clusters [J]. Physical Review Letters, 2000, 84(22): 5090–5093. doi: 10.1103/PhysRevLett.84.5090
|
[30] |
VÉNIARD V, TAIEB R, MAQUET A. Photoionization of atoms using time-dependent density functional theory [J]. Laser Physics, 2003, 13(4): 465–474.
|
[31] |
DE GIOVANNINI U, VARSANO D, MARQUES M A L, et al. Ab initio angle-and energy-resolved photoelectron spectroscopy with time-dependent density-functional theory [J]. Physical Review A, 2012, 85(6): 062515. doi: 10.1103/PhysRevA.85.062515
|
[32] |
ROHRINGER N, PETER S, BURGDÖRFER J. Calculating state-to-state transition probabilities within time-dependent density-functional theory [J]. Physical Review A, 2006, 74(4): 042512. doi: 10.1103/PhysRevA.74.042512
|
[33] |
LI Y, ULLRICH C A. Time-dependent transition density matrix [J]. Chemical Physics, 2011, 391(1): 157–163. doi: 10.1016/j.chemphys.2011.02.001
|
[34] |
D’AGOSTA R, VIGNALE G. Non-V-representability of currents in time-dependent many-particle systems [J]. Physical Review B, 2005, 71(24): 245103. doi: 10.1103/PhysRevB.71.245103
|
[35] |
VIGNALE G. Mapping from current densities to vector potentials in time-dependent current density functional theory [J]. Physical Review B, 2004, 70(20): 201102. doi: 10.1103/PhysRevB.70.201102
|
[36] |
VIGNALE G, KOHN W. Current-dependent exchange-correlation potential for dynamical linear response theory [J]. Physical Review Letters, 1996, 77(10): 2037–2040. doi: 10.1103/PhysRevLett.77.2037
|
[37] |
VIGNALE G, ULLRICH C A, CONTI S. Time-dependent density functional theory beyond the adiabatic local density approximation [J]. Physical Review Letters, 1997, 79(24): 4878–4881. doi: 10.1103/PhysRevLett.79.4878
|
[38] |
MAITRA N T, SOUZA I, BURKE K. Current-density functional theory of the response of solids [J]. Physical Review B, 2003, 68(4): 045109. doi: 10.1103/PhysRevB.68.045109
|
[39] |
YABANA K, BERTSCH G F. Time-dependent local-density approximation in real time [J]. Physical Review B, 1996, 54(7): 4484–4487.
|
[40] |
BERTSCH G F, IWATA J I, RUBIO A, et al. Real-space, real-time method for the dielectric function [J]. Physical Review B, 2000, 62(12): 7998–8002.
|
[41] |
YABANA K, SUGIYAMA T, SHINOHARA Y, et al. Time-dependent density functional theory for strong electromagnetic fields in crystalline solids [J]. Physical Review B, 2012, 85(4): 045134.
|
[42] |
MARQUES M A L, CASTRO A, BERTSCH G F, et al. Octopus: a first-principles tool for excited electron–ion dynamics [J]. Computer Physics Communications, 2003, 151(1): 60–78.
|
[43] |
CASTRO A, APPEL H, OLIVEIRA M, et al. Octopus: a tool for the application of time-dependent density functional theory [J]. Physica Status Solidi (B), 2006, 243(11): 2465–2488.
|
[44] |
ANDRADE X, STRUBBE D, DE GIOVANNINI U, et al. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems [J]. Physical Chemistry Chemical Physics, 2015, 17(47): 31371–31396.
|
[45] |
DREUW A, HEAD-GORDON M. Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes [J]. Journal of the American Chemical Society, 2004, 126(12): 4007–4016. doi: 10.1021/ja039556n
|
[46] |
HIERINGER W, GÖRLING A. Failure of time-dependent density functional methods for excitations in spatially separated systems [J]. Chemical Physics Letters, 2006, 419(4/5/6): 557–562.
|
[47] |
AUTSCHBACH J. Charge-transfer excitations and time-dependent density functional theory: problems and some proposed solutions [J]. ChemPhysChem, 2009, 10(11): 1757–1760. doi: 10.1002/cphc.v10:11
|
[48] |
CASIDA M E, GUTIERREZ F, GUAN J, et al. Charge-transfer correction for improved time-dependent local density approximation excited-state potential energy curves: analysis within the two-level model with illustration for H2 and LiH [J]. The Journal of Chemical Physics, 2000, 113(17): 7062–7071. doi: 10.1063/1.1313558
|
[49] |
HU C, SUGINO O, MIYAMOTO Y. Modified linear response for time-dependent density-functional theory: application to Rydberg and charge-transfer excitations [J]. Physical Review A, 2006, 74(3): 032508. doi: 10.1103/PhysRevA.74.032508
|
[50] |
HU C, SUGIN O. Average excitation energies from time-dependent density functional response theory [J]. Journal of Chemical Physics, 2007, 126: 074112. doi: 10.1063/1.2436887
|
[51] |
TAWADA Y, TSUNEDA T, YANAGISAWA S, et al. A long-range-corrected time-dependent density functional theory [J]. The Journal of Chemical Physics, 2004, 120(18): 8425–8433. doi: 10.1063/1.1688752
|
[52] |
TOKURA S, TSUNEDA T, HIRAO K. Long-range-corrected time-dependent density functional study on electronic spectra of five-membered ring compounds and free-base porphyrin [J]. Journal of Theoretical and Computational Chemistry, 2006, 5(4): 925–944. doi: 10.1142/S0219633606002684
|
[53] |
VYDROV O A, SCUSERIA G E. Assessment of a long-range corrected hybrid functional [J]. The Journal of Chemical Physics, 2006, 125(23): 234109. doi: 10.1063/1.2409292
|
[54] |
LIVSHITS E, BAER R. A well-tempered density functional theory of electrons in molecules [J]. Physical Chemistry Chemical Physics, 2007, 9(23): 2932–2941. doi: 10.1039/b617919c
|
[55] |
PEACH M J G, TELLGREN E I, SAŁEK P, et al. Structural and electronic properties of polyacetylene and polyyne from hybrid and coulomb-attenuated density functionals [J]. The Journal of Physical Chemistry A, 2007, 111(46): 11930–11935. doi: 10.1021/jp0754839
|
[56] |
LIVSHITS E, BAER R. A density functional theory for symmetric radical cations from bonding to dissociation [J]. The Journal of Physical Chemistry A, 2008, 112(50): 12789–12791. doi: 10.1021/jp803606n
|
[57] |
STEIN T, KRONIK L, BAER R. Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory [J]. Journal of the American Chemical Society, 2009, 131(8): 2818–2820. doi: 10.1021/ja8087482
|
[58] |
MAITRA N T, ZHANG F, CAVE R J, et al. Double excitations within time-dependent density functional theory linear response [J]. The Journal of Chemical Physics, 2004, 120(13): 5932–5937. doi: 10.1063/1.1651060
|
[59] |
GRITSENKO O V, BAERENDS E J. Double excitation effect in non-adiabatic time-dependent density functional theory with an analytic construction of the exchange–correlation kernel in the common energy denominator approximation [J]. Physical Chemistry Chemical Physics, 2009, 11(22): 4640–4646. doi: 10.1039/b903123e
|
[60] |
ROMANIELLO P, SANGALLI D, BERGER J A, et al. Double excitations in finite systems [J]. The Journal of Chemical Physics, 2009, 130(4): 044108. doi: 10.1063/1.3065669
|
[61] |
SANGALLI D, ROMANIELLO P, ONIDA G, et al. Double excitations in correlated systems: a many–body approach [J]. The Journal of Chemical Physics, 2011, 134(3): 034115. doi: 10.1063/1.3518705
|
[62] |
SÄKKINEN N, MANNINEN M, VAN LEEUWEN R. The Kadanoff–Baym approach to double excitations in finite systems [J]. New Journal of Physics, 2012, 14(1): 013032. doi: 10.1088/1367-2630/14/1/013032
|
[63] |
HUIX-ROTLLANT M, IPATOV A, RUBIO A, et al. Assessment of dressed time-dependent density-functional theory for the low-lying valence states of 28 organic chromophores [J]. Chemical Physics, 2011, 391(1): 120–129. doi: 10.1016/j.chemphys.2011.03.019
|
[64] |
FURCHE F, AHLRICHS R. Absolute configuration of D2-symmetric fullerene C84 [J]. Journal of the American Chemical Society, 2002, 124(15): 3804–3805. doi: 10.1021/ja012207d
|
[65] |
LIU J, LIANG W Z. Molecular-orbital-free algorithm for the excited-state force in time-dependent density functional theory [J]. The Journal of Chemical Physics, 2011, 134(4): 044114. doi: 10.1063/1.3548063
|
[66] |
LEVINE B G, KO C, QUENNEVILLE J, et al. Conical intersections and double excitations in time-dependent density functional theory [J]. Molecular Physics, 2006, 104(5/6/7): 1039–1051.
|
[67] |
TAPAVICZA E, TAVERNELLI I, ROTHLISBERGER U, et al. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry [J]. The Journal of Chemical Physics, 2008, 129(12): 124108. doi: 10.1063/1.2978380
|
[68] |
KADUK B, VAN VOORHIS T. Communication: conical intersections using constrained density functional theory–configuration interaction [J]. Journal of Chemical Physics, 2010, 133: 061102. doi: 10.1063/1.3470106
|
[69] |
MAITRA N T. On correlated electron-nuclear dynamics using time-dependent density functional theory [J]. The Journal of Chemical Physics, 2006, 125(1): 014110. doi: 10.1063/1.2210471
|
[70] |
GONZE X, GHOSEZ P, GODBY R W. Density-polarization functional theory of the response of a periodic insulating solid to an electric field [J]. Physical Review Letters, 1995, 74(20): 4035. doi: 10.1103/PhysRevLett.74.4035
|
[71] |
GHOSEZ P, GONZE X, GODBY R W. Long-wavelength behavior of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems [J]. Physical Review B, 1997, 56(20): 12811–12817. doi: 10.1103/PhysRevB.56.12811
|
[72] |
ONIDA G, REINING L, RUBIO A. Electronic excitations: density-functional versus many-body Green’s-function approaches [J]. Reviews of Modern Physics, 2002, 74(2): 601–659. doi: 10.1103/RevModPhys.74.601
|
[73] |
BOTTI S, SOTTILE F, VAST N, et al. Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory [J]. Physical Review B, 2004, 69(15): 155112. doi: 10.1103/PhysRevB.69.155112
|
[74] |
SHARMA S, DEWHURST J K, SANNA A, et al. Bootstrap approximation for the exchange-correlation kernel of time-dependent density-functional theory [J]. Physical Review Letters, 2011, 107(18): 186401. doi: 10.1103/PhysRevLett.107.186401
|
[75] |
SHARMA S, DEWHURST J K, SANNA A, et al. Enhanced excitonic effects in the energy loss spectra of LiF and Ar at large momentum transfer [J]. New Journal of Physics, 2012, 14(5): 053052. doi: 10.1088/1367-2630/14/5/053052
|
[76] |
TANCOGNE-DEJEAN N, MÜCKE O D, KÄRTNER F X, et al. Impact of the electronic band structure in high-harmonic generation spectra of solids [J]. Physical Review Letters, 2017, 118(8): 087403. doi: 10.1103/PhysRevLett.118.087403
|
[77] |
BACZEWSKI A D, SHULENBURGER L, DESJARLAIS M P, et al. X-ray thomson scattering in warm dense matter without the chihara decomposition [J]. Physical Review Letters, 2016, 116(11): 115004. doi: 10.1103/PhysRevLett.116.115004
|
[78] |
MO C, FU Z, KANG W, et al. First-principles estimation of electronic temperature from X-ray thomson scattering spectrum of isochorically heated warm dense matter [J]. Physical Review Letters, 2018, 120(20): 205002. doi: 10.1103/PhysRevLett.120.205002
|
[79] |
SPERLING P, GAMBOA E J, LEE H J, et al. Free-electron X-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter [J]. Physical Review Letters, 2015, 115(11): 115001. doi: 10.1103/PhysRevLett.115.115001
|
[80] |
RAMAKRISHNAN R, HARTMANN M, TAPAVICZA E, et al. Electronic spectra from TDDFT and machine learning in chemical space [J]. The Journal of Chemical Physics, 2015, 143(8): 084111. doi: 10.1063/1.4928757
|
[81] |
FUKS J I, NIELSEN S E B, RUGGENTHALER M, et al. Time-dependent density functional theory beyond Kohn–Sham Slater determinants [J]. Physical Chemistry Chemical Physics, 2016, 18(31): 20976–20985. doi: 10.1039/C6CP00722H
|
[82] |
NIELSEN S E B, RUGGENTHALER M, VAN LEEUWEN R. Many-body quantum dynamics from the density [J]. EPL (Europhysics Letters), 2013, 101(3): 33001. doi: 10.1209/0295-5075/101/33001
|
[83] |
ELLIOTT P, MAITRA N T. Propagation of initially excited states in time-dependent density-functional theory [J]. Physical Review A, 2012, 85(5): 052510. doi: 10.1103/PhysRevA.85.052510
|
[84] |
CASTRO A, MARQUES M A L, ALONSO J A, et al. Excited states dynamics in time-dependent density functional theory [J]. The European Physical Journal D, 2004, 28(2): 211–218. doi: 10.1140/epjd/e2003-00306-3
|
[85] |
ALONSO J L, ANDRADE X, ECHENIQUE P, et al. Efficient formalism for large-scale ab initio molecular dynamics based on time-dependent density functional theory [J]. Physical Review Letters, 2008, 101(9): 096403. doi: 10.1103/PhysRevLett.101.096403
|
[86] |
MENG S, KAXIRAS E. Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations [J]. The Journal of Chemical Physics, 2008, 129(5): 054110. doi: 10.1063/1.2960628
|
[87] |
MENG S, KAXIRAS E. Mechanisms for ultrafast nonradiative relaxation in electronically excited eumelanin constituents [J]. Biophysical Journal, 2008, 95(9): 4396–4402. doi: 10.1529/biophysj.108.135756
|
[88] |
TULLY J C. Molecular dynamics with electronic transitions [J]. The Journal of Chemical Physics, 1990, 93(2): 1061–1071. doi: 10.1063/1.459170
|
[89] |
TAPAVICZA E, TAVERNELLI I, ROTHLISBERGER U. Trajectory surface hopping within linear response time-dependent density-functional theory [J]. Physical Review Letters, 2007, 98(2): 023001. doi: 10.1103/PhysRevLett.98.023001
|
[90] |
TAVERNELLI I, CURCHOD B F E, ROTHLISBERGER U. Mixed quantum-classical dynamics with time-dependent external fields: a time-dependent density-functional-theory approach [J]. Physical Review A, 2010, 81(5): 052508. doi: 10.1103/PhysRevA.81.052508
|
[91] |
KRISHTAL A, CERESOLI D, PAVANELLO M. Subsystem real-time time dependent density functional theory [J]. The Journal of Chemical Physics, 2015, 142(15): 154116. doi: 10.1063/1.4918276
|
[92] |
PAVANELLO M. On the subsystem formulation of linear-response time-dependent DFT [J]. The Journal of Chemical Physics, 2013, 138(20): 204118. doi: 10.1063/1.4807059
|
[93] |
NEUGEBAUER J. Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory [J]. The Journal of Chemical Physics, 2007, 126(13): 134116. doi: 10.1063/1.2713754
|
[1] | HUANG Min, ZHU Benhao, XIAO Gesheng, QIAO Li. Simulation on Deformation Damage and Strain Rate Effect of Nb3Sn Composite Superconductors under Cycling Load at Extreme Low Temperature[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 024201. doi: 10.11858/gywlxb.20230755 |
[2] | YANG Dong, JIANG Ziwei, ZHENG Zhijun. Dynamic Behavior and Constitutive Relationship of Titanium Alloy Ti6Al4V under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014101. doi: 10.11858/gywlxb.20230743 |
[3] | YAN Jitao, CHEN Wenfei, ZHANG Hao, YOU Jian, SHI Chaoming, JIANG Haocheng, ZHU Jue. Dynamic Mechanical Behavior of G550 Cold-Formed Steel under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024101. doi: 10.11858/gywlxb.20220705 |
[4] | QIAO Jingyan, LI Jinzhu, ZHANG Xihuang, YAO Zhiyan, SHEN Shiliang. Dynamic and Static Tensile Mechanical Properties of Glass Fiber Reinforced Plastics[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034102. doi: 10.11858/gywlxb.20230618 |
[5] | WEI Jiawei, SHI Xiaopeng, FENG Zhenyu. Strain Rate Dependent Constitutive Model of Rubber[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024205. doi: 10.11858/gywlxb.20210815 |
[6] | YU Wenfeng, LI Jinzhu, YAO Zhiyan, HUANG Fenglei. Mechanical Behaviors and Constitutive Model of Polymide under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044101. doi: 10.11858/gywlxb.20210922 |
[7] | TANG Ruitao, XU Liuyun, WEN Heming, WANG Zihao. A Macroscopic Dynamic Constitutive Model for Ceramic Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044201. doi: 10.11858/gywlxb.20190863 |
[8] | WU Qijian, ZHI Xudong. Strain Rate Effect of GFRP-Reinforced Circular Steel Tube under Low-Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044203. doi: 10.11858/gywlxb.20180653 |
[9] | LI Xueyan, LI Zhibin, ZHANG Duo. Constitutive Model of Aluminum Foams Considering Temperature Effect under Quasi-Static Compression[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044103. doi: 10.11858/gywlxb.20170642 |
[10] | CHEN Qing-Shan, MIAO Ying-Gang, GUO Ya-Zhou, LI Yu-Long. Comparative Analysis of 3 Constitutive Models for 93 Tungsten Alloy[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 753-760. doi: 10.11858/gywlxb.2017.06.010 |
[11] | GAO Guang-Fa. Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007 |
[12] | GAO Guang-Fa. Hardening Effect of the Strain Rate on the Dynamic Tensile Strength of the Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013 |
[13] | LI Ding-Yuan, ZHU Zhi-Wu, LU Ye-Sen. Mechanical Properties and Constitutive Relation for 42CrMo Steel under Impact Load[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 761-768. doi: 10.11858/gywlxb.2017.06.011 |
[14] | WANG Li-Wen, PANG Bao-Jun, CHEN Yong, ZHANG Kai. Study on Dynamic Mechanical Behavior and Constitutive Model of Reactive Powder Concrete after Exposure in High Temperature[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 361-368. doi: 10.11858/gywlxb.2012.04.001 |
[15] | LI Jun-Ling, LU Fang-Yun, FU Hua, ZHAO Yu-Gang, TAN Duo-Wang. Research on the Dynamic Behavior of a PBX Explosive[J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 159-164 . doi: 10.11858/gywlxb.2011.02.012 |
[16] | PANG Bao-Jun, YANG Zhen-Qi, WANG Li-Wen, CHI Run-Qiang. Dynamic Compression Properties and Constitutive Model with Strain Rate Effect of Rubber Material[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005 |
[17] | XIAO Da-Wu, LI Ying-Lei, HU Shi-Sheng. Constitutive Model of Pure Zirconium under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 46-50 . doi: 10.11858/gywlxb.2009.01.008 |
[18] | LIU Yao-Dong, YU Ji-Lin, ZHENG Zhi-Jun. Effect of Inertia on the Dynamic Behavior of Cellular Metal[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 118-124 . doi: 10.11858/gywlxb.2008.02.002 |
[19] | ZHANG Peng, ZHAO Feng, BAI Shu-Lin, FU Bin, ZHANG Guo-Hua. Experimental Study on the Microstructures and Dynamic Behavior of a PBX Substitute Material[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 20-28 . doi: 10.11858/gywlxb.2007.01.004 |
[20] | WANG Zheng, NI Yu-Shan, CAO Ju-Zhen, ZHANG Wen. Building of a Constitutive Model for Concrete under Dynamic Impact[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 337-344 . doi: 10.11858/gywlxb.2006.04.001 |
Effective modulus of linear contact/GPa | Normal to shear stiffness ratio of linear contact | Porosity | Minimum radius of particles/mm | Size ratio of maximum and minimum particles | Tensile strength of contact/MPa | Shear strength of contact/MPa |
55 | 2.9 | 0.2 | 0.1 | 1.5 | 300 | 600 |
Method | Equivalent density/(kg·m–3) | Elastic modulus/GPa | Poisson’s ratio | Compressive strength/MPa | Tensile strength/MPa | Bending strength/MPa | Fracture toughness/(N·m–3/2) |
Manufacture provide | 2.203 | 77.8 | 0.170 | 860 | 50 | 67.0 | 0.78 |
DEM numerical simulation | 2.203 | 78.0 | 0.172 | 798 | 50 | 67.4 | 0.85 |
Effective modulus of linear contact/GPa | Normal to shear stiffness ratio of linear contact | Porosity | Minimum radius of particles/mm | Size ratio of maximum and minimum particles | Tensile strength of contact/MPa | Shear strength of contact/MPa |
55 | 2.9 | 0.2 | 0.1 | 1.5 | 300 | 600 |
Method | Equivalent density/(kg·m–3) | Elastic modulus/GPa | Poisson’s ratio | Compressive strength/MPa | Tensile strength/MPa | Bending strength/MPa | Fracture toughness/(N·m–3/2) |
Manufacture provide | 2.203 | 77.8 | 0.170 | 860 | 50 | 67.0 | 0.78 |
DEM numerical simulation | 2.203 | 78.0 | 0.172 | 798 | 50 | 67.4 | 0.85 |