Volume 33 Issue 6
Nov 2019
Turn off MathJax
Article Contents
TIAN Junhong, SUN Yuanxiang, ZHANG Zhifan. Effect of Al/O Ratio on Underwater Explosion Load and Energy Output Configuration of Aluminized Explosive[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065101. doi: 10.11858/gywlxb.20190745
Citation: TIAN Junhong, SUN Yuanxiang, ZHANG Zhifan. Effect of Al/O Ratio on Underwater Explosion Load and Energy Output Configuration of Aluminized Explosive[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065101. doi: 10.11858/gywlxb.20190745

Effect of Al/O Ratio on Underwater Explosion Load and Energy Output Configuration of Aluminized Explosive

doi: 10.11858/gywlxb.20190745
  • Received Date: 25 Mar 2019
  • Rev Recd Date: 19 Apr 2019
  • In order to study the effect of Al/O ratio on underwater explosion load and energy output configuration of aluminized explosives systematically, four kinds of aluminized explosives are taken into account, and their Al/O ratio are 0, 0.16, 0.36 and 0.63, respectively. Coupled Eulerian-Lagrangian method was used to simulate the whole process of underwater explosion of four kinds of aluminized explosives on the basis of verifying the effectiveness of numerical method. The coupling effect between shock wave and bubble was considered in the numerical simulation. The impact effect is explained from three aspects: shock wave, bubble and energy output configuration. Simulation results show that with the increase of Al/O ratio, shock wave attenuation constant, shock wave impulse, bubble period, bubble maximum radius and specific bubble energy of underwater explosion of aluminized explosives all increase. Shock wave peak pressure, energy flow density and specific shock wave energy reach the maximum when Al/O ratio is 0.36. The addition of aluminum improves bubble energy more significantly than shock wave energy.

     

  • loading
  • [1]
    陈朗, 龙新平, 冯长根, 等. 含铝炸药爆轰[M]. 北京: 国防工业出版社, 2004: 1–3.

    CHEN L, LONG X P, FENG C G, et al. Detonation of aluminized explosives [M]. Beijing: National Defense Industry Press, 2004: 1–3.
    [2]
    周霖, 徐少辉, 徐更光. 炸药水下爆炸能量输出特性研究 [J]. 兵工学报, 2006(2): 235–238. doi: 10.3321/j.issn:1000-1093.2006.02.011

    ZHOU L, XU S H, XU G G. Research on energy output characteristics for underwater explosion of explosives [J]. Acta Armamentarii, 2006(2): 235–238. doi: 10.3321/j.issn:1000-1093.2006.02.011
    [3]
    赵继波, 李金河, 谭多望, 等. 铝氧比对水中爆炸近场冲击波的影响 [J]. 含能材料, 2009, 17(4): 420–423. doi: 10.3969/j.issn.1006-9941.2009.04.011

    ZHAO J B, LI J H, TAN D W, et al. Effects of ratios of aluminum to oxygen on shock wave of cylindrical charge at underwater explosive close-field [J]. Chinese Journal of Energetic Materials, 2009, 17(4): 420–423. doi: 10.3969/j.issn.1006-9941.2009.04.011
    [4]
    赵倩, 聂建新, 王秋实, 等. 含铝炸药水下爆炸及其对舰船毁伤的数值模拟 [J]. 兵工学报, 2017, 38(2): 298–304. doi: 10.3969/j.issn.1000-1093.2017.02.013

    ZHAO Q, NIE J X, WANG Q S, et al. Numerical simulation on underwater explosion of aluminized explosives and its damage to ship [J]. Acta Armamentarii, 2017, 38(2): 298–304. doi: 10.3969/j.issn.1000-1093.2017.02.013
    [5]
    门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础 [M]. 北京: 北京理工大学出版社, 2015: 99–101.

    MEN J B, JIANG J W, WANG S Y. Fundamentals of numerical simulation for explosion and shock problems [M]. Beijing: Beijing Institute of Technology Press, 2015: 99–101.
    [6]
    NOH W F. CEL: a time-dependent two-space-dimensional coupled Eulerian-Lagrange code [M]// ALDER B, FERNBACH S, ROTENBERG M, et al. Methods in Computational Physics: Volume 3. New York: Academic Press, 1964: 117–179.
    [7]
    BENSON D J, OKAZAWA S. Contact in a muti-material Eulerian finite element formulation [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39): 4277–4298.
    [8]
    李烨. 近场水下爆炸载荷及其对舰船局部结构毁伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    LI Y. Research on near field underwater explosion loads and local structure damage of vessels [D]. Harbin: Harbin Engineering University, 2016.
    [9]
    HIBBITT H, KARLSSON B, SORENSEN P. Abaqus analysis user’s manual version 6.10 [M]. Providence, RI, USA: Dassault Systèmes Simulia Corp., 2011.
    [10]
    JACOBS S J. On the equation of state for detonation products at high density [C]//12th Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1969.
    [11]
    项大林, 荣吉利, 李健, 等. 基于KHT程序的RDX基含铝炸药JWL状态方程参数预测研究 [J]. 北京理工大学学报, 2013, 33(3): 239–243. doi: 10.3969/j.issn.1001-0645.2013.03.005

    XIANG D L, RONG J L, LI J, et al. JWL equation of state parameters prediction of RDX-based aluminized explosive based on KHT code [J]. Transactions of Beijing Institute of Technology, 2013, 33(3): 239–243. doi: 10.3969/j.issn.1001-0645.2013.03.005
    [12]
    郅斌伟, 张志江, 马硕, 等. 水底爆炸冲击波峰值压力数值仿真 [J]. 爆破, 2009, 26(1): 22–24, 28. doi: 10.3963/j.issn.1001-487X.2009.01.006

    ZHI B W, ZHANG Z J, MA S, et al. Research on shock wave peak pressure of under water explosion [J]. Blasting, 2009, 26(1): 22–24, 28. doi: 10.3963/j.issn.1001-487X.2009.01.006
    [13]
    COLE R H. Underwater explosion [M]. New Jersey: Princeton University Press, 1948: 118–127.
    [14]
    张远平, 池家春, 龚晏青, 等. 含铝炸药水下爆炸性能的实验研究 [J]. 高压物理学报, 2010, 24(4): 316–320. doi: 10.11858/gywlxb.2010.04.013

    ZHANG Y P, CHI J C, GONG Y Q, et al. Experimental study on underwater explosion performance of aluminized explosive [J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 316–320. doi: 10.11858/gywlxb.2010.04.013
    [15]
    刘科种. 爆炸能量输出结构与高威力炸药研究[D]. 北京: 北京理工大学, 2009.

    LIU K Z. Study on explosive energy output structure and high explosive charge [D]. Beijing: Beijing Institute of Technology, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views(7298) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return