Volume 33 Issue 6
Nov 2019
Turn off MathJax
Article Contents
ZHENG Xingrong. A Novel Expression of Cohesive Energy Contributions to the Highly Compressed Characteristic for Rare-Gas Solids[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 062201. doi: 10.11858/gywlxb.20190731
Citation: ZHENG Xingrong. A Novel Expression of Cohesive Energy Contributions to the Highly Compressed Characteristic for Rare-Gas Solids[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 062201. doi: 10.11858/gywlxb.20190731

A Novel Expression of Cohesive Energy Contributions to the Highly Compressed Characteristic for Rare-Gas Solids

doi: 10.11858/gywlxb.20190731
  • Received Date: 26 Feb 2019
  • Rev Recd Date: 22 Mar 2019
  • Based on quantum theory and atomic cluster theory, using many-body expansion method and the ab initio method, a novel expression is presented for calculating the cohesive energy of rare-gas solids (RGS) (RGS=He, Ne, Ar, Kr) and studying the cohesive energy contribution to the highly compressed characteristics for RGS. In this expression, we introduce a new coefficient $\beta $=0.5, which makes the expression of potential function simple and accurate. Compared with previous results, it is necessary to obtain a new cohesive energy expression that can describe accurately the many-body interaction contribution to cohesive energy, and the mean relative errors are within 5%. The expression can also be applied to calculate the compressibility of solid helium, neon, argon and krypton in the present experimental pressure range (He 60 GPa, Ne 238 GPa, Ar 114 GPa, Kr 128 GPa), and the numerical results are consistent with the recent experiment results and ab initio calculation results with the mean relative errors of no more than 5%. Finally, an application in solid argon verifies the accuracy of the potential expression. The expression not only can be applicable in a wider density and pressure range, but also all rare gas systems. In addition, it has important guiding significance for studying the high-pressure compression, specific heat, melting curve and elastic modulus of rare-gas solids.

     

  • loading
  • [1]
    TAN L, ZHANG W, ZHANG F. Research on energy efficiency system of new energy vehicle electric drive [C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2019, 223(1): 012028.
    [2]
    NADAÏ A, LABUSSIÈRE O. New energy resources in the making [J]. Energy Transitions, 2018, 256: 49.
    [3]
    MYATT P T, DHAM A K, CHANDRASEKHAR P, et al. A new empirical potential energy function for Ar2 [J]. Molecular Physics, 2018, 116(12): 1598–1623. doi: 10.1080/00268976.2018.1437932
    [4]
    GORBENKO I I, TROITSKAYA E P, PILIPENKO E A. Elastic properties of compressed rare-gas crystals in a model of deformable atoms [J]. Physics of the Solid State, 2017, 59(1): 132–140. doi: 10.1134/S1063783417010097
    [5]
    BONNET P. Equation of state for solid rare gases and alkali metals under pressure [J]. Physica B: Condensed Matter, 2016, 492: 50–54. doi: 10.1016/j.physb.2016.04.006
    [6]
    田春玲, 刘福生, 蔡灵仓, 等. 多体相互作用对高压固氦状态方程的影响 [J]. 物理学报, 2006, 55(2): 764–769. doi: 10.3321/j.issn:1000-3290.2006.02.051

    TIAN C L, LIU F S, CAI L C, et al. Many-body contributions to the equation of state for highly compressed solid helium [J]. Acta Physica Sinica, 2006, 55(2): 764–769. doi: 10.3321/j.issn:1000-3290.2006.02.051
    [7]
    郑兴荣. 多体相互作用对固氖物态方程的影响 [J]. 陇东学院学报, 2015, 26(5): 17. doi: 10.3969/j.issn.1674-1730.2015.05.005

    ZHENG X R. On the effect of multi-body interactions on the equation of state of solid neon [J]. Journal of Longdong University, 2015, 26(5): 17. doi: 10.3969/j.issn.1674-1730.2015.05.005
    [8]
    ABBASPOUR M, BORZOUIE Z. Equation of state, elastic constants, and melting curve of solid neon using an effective two-body potential including quantum corrections [J]. Fluid Phase Equilibria, 2014, 379: 167–174. doi: 10.1016/j.fluid.2014.07.026
    [9]
    SCHMIDT K M, VASQUEZ V R. A generalized method for the inversion of cohesive energy curves from isotropic and anisotropic lattice expansions [J]. Physical Chemistry Chemical Physics, 2015, 17(36): 23423–23437. doi: 10.1039/C5CP03792A
    [10]
    KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133. doi: 10.1103/PhysRev.140.A1133
    [11]
    TIAN C L, LIU F S, CAI L C, et al. Ab initio calculations of many-body interactions for compressed solid argon [J]. The Journal of Chemical Physics, 2015, 143(17): 174506. doi: 10.1063/1.4935050
    [12]
    TIAN C L, WU N, LIU F S, et al. Four-body interaction energy for compressed solid krypton from quantum theory [J]. The Journal of Chemical Physics, 2012, 137(4): 044108. doi: 10.1063/1.4737183
    [13]
    AZIZ R. Accurate intermolecular potential for neon [J]. High Temperature High Pressures, 1980, 12(5): 565–577.
    [14]
    AZIZ R A, SLAMAN M J. The Ne-Ne interatomic potential revisited [J]. Chemical Physics, 1989, 130(1/2/3): 187–194.
    [15]
    AZIZ R A, SLAMAN M J. The argon and krypton interatomic potentials revisited [J]. Molecular Physics, 1986, 58(4): 679–697. doi: 10.1080/00268978600101501
    [16]
    FREIMAN Y A, TRETYAK S M. Many-body interactions and high-pressure equations of state in rare-gas solids [J]. Low Temperature Physics, 2007, 33(6): 545–552. doi: 10.1063/1.2746249
    [17]
    LOUBEYRE P. Three-body-exchange interaction in dense rare gases [J]. Physical Review B, 1988, 37(10): 5432. doi: 10.1103/PhysRevB.37.5432
    [18]
    LOUBEYRE P, LETOULLEC R, PINCEAUX J P, et al. Equation of state and phase diagram of solid 4He from single-crystal X-ray diffraction over a large P-T domain [J]. Physical Review Letters, 1993, 71(14): 2272. doi: 10.1103/PhysRevLett.71.2272
    [19]
    经福谦. 实验物态方程导引 [M]. 北京: 科学出版社, 1999: 31.

    JING F Q. Introduction to experimental equation of state [M]. Beijing: Science Press, 1999: 31.
    [20]
    BERNE B J. Statistical mechanics [M]. New York: Plenum Press, 1977.
    [21]
    武娜, 田春玲, 刘福生, 等. 固氖高压物态方程的量子理论计算 [J]. 高压物理学报, 2012, 26(1): 41–47. doi: 10.11858/gywlxb.2012.01.006

    WU N, TIAN C L, LIU F S, et al. Equation of state of solid neon from quantum calculation [J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 41–47. doi: 10.11858/gywlxb.2012.01.006
    [22]
    郑兴荣, 陈海军, 高晓红, 等. 高压固氩物态方程的量子理论计算 [J]. 高压物理学报, 2017, 31(4): 396–402. doi: 10.11858/gywlxb.2017.04.007

    ZHENG X R, CHEN H J, GAO X H, et al. Quantum calculation for equation of state of compressed solid argon [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 396–402. doi: 10.11858/gywlxb.2017.04.007
    [23]
    TANGE Y, NISHIHARA Y, TSUCHIYA T. Unified analyses for P-V-T equation of state of MgO: a solution for pressure-scale problems in high P-T experiments [J]. Journal of Geophysical Research: Solid Earth, 2009, 114: B03208.
    [24]
    JEPHCOAT A P. Rare-gas solids in the Earth’s deep interior [J]. Nature, 1998, 393(6683): 355. doi: 10.1038/30712
    [25]
    SCHWERDTFEGER P, HERMANN A. Equation of state for solid neon from quantum theory [J]. Physical Review B, 2009, 80(6): 064106. doi: 10.1103/PhysRevB.80.064106
    [26]
    SCHMIDT M W, BALDRIDGE K K, BOATZ J A, et al. General atomic and molecular electronic structure system [J]. Journal of Computational Chemistry, 1993, 14(11): 1347–1363. doi: 10.1002/jcc.540141112
    [27]
    HEMLEY R J, ZHA C S, JEPHCOAT A P, et al. X-ray diffraction and equation of state of solid neon to 110 GPa [J]. Physical Review B, 1989, 39(16): 11820. doi: 10.1103/PhysRevB.39.11820
    [28]
    DEWAELE A, DATCHI F, LOUBEYRE P, et al. High pressure-high temperature equations of state of neon and diamond [J]. Physical Review B, 2008, 77(9): 094106. doi: 10.1103/PhysRevB.77.094106
    [29]
    FINGER L W, HAZEN R M, ZOU G, et al. Structure and compression of crystalline argon and neon at high pressure and room temperature [J]. Applied Physics Letters, 1981, 39(11): 892–894. doi: 10.1063/1.92597
    [30]
    TAKEMURA K, WATANUKI T, OHWADA K, et al. Powder X-ray diffraction study of Ne up to 240 GPa [C]//Journal of Physics: Conference Series. IOP Publishing, 2010, 215(1): 012017.
    [31]
    ERRANDONEA D, BOEHLER R, JAPEL S, et al. Structural transformation of compressed solid Ar: an X-ray diffraction study to 114 GPa [J]. Physical Review B, 2006, 73(9): 092106. doi: 10.1103/PhysRevB.73.092106
    [32]
    POLIAN A, BESSON J M, GRIMSDITCH M, et al. Solid krypton: equation of state and elastic properties [J]. Physical Review B, 1989, 39(2): 1332. doi: 10.1103/PhysRevB.39.1332
    [33]
    ANDERSON M S, SWENSON C A. Experimental equations of state for the rare gas solids [J]. Journal of Physics and Chemistry of Solids, 1975, 36(3): 145–162. doi: 10.1016/0022-3697(75)90004-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(9623) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return