WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
Citation:
TAN Ye, XIAO Yuanlu, XUE Tao, LI Jun, JIN Ke. Melting of MB2 Alloy under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020106. doi: 10.11858/gywlxb.20190729
WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
Citation:
TAN Ye, XIAO Yuanlu, XUE Tao, LI Jun, JIN Ke. Melting of MB2 Alloy under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020106. doi: 10.11858/gywlxb.20190729
Reverse impact experiments were performed at a shock pressure range from 30 GPa to 73 GPa to investigate the dynamic response of magnesium aluminum alloy. A displacement interferometer system for any reflector was employed to measure the impact velocity and sample/window interface particle velocities. The Hugoniot data obtained in this study had a good agreement with the data published before, however, the sound velocities extracted from our experiments showed a transition from longitudinal to bulk sound velocity. This discontinuity is attributed to melting transition under shock compression, and the transition pressure range is estimated from 40 GPa to 57 GPa.
为了确定RbNO3的3个相的动力学稳定性,采用有限位移法计算了它们的声子谱。若声子谱具有负频率,则意味着动力学不稳定[29]。在简谐近似下,分别计算了R3m、Pnma和Pmmn相在不同压强下的声子色散曲线以及声子分波态密度(phonon density of states, PHDOS),结果如图4所示。可以看出,声子谱均未出现负频率,表明3个相在相应压强下均具有动力学稳定性。
图
4R3m、Pnma和Pmmn相的声子色散曲线以及声子态密度
Figure
4.
Phonon-dispersion curves and the PHDOS of R3m, Pnma and Pmmn phase
图7给出了0 GPa的R3m相、4 GPa的Pnma相和12 GPa的Pmmn相的电子能带结构和电子态密度( density of states, DOS)。电子态密度结果表明,价带主要来自O的p轨道,导带主要来自N-p与O-p的杂化。3个结构在相应压强下的带隙分别为3.06、3.40和3.10 eV。带隙的存在说明它们均为半导体材料,然而3个结构的带隙类型不同,其中,R3m结构具有直接带隙,Pnma和Pmmn结构具有间接带隙。此外,还可以发现,在结构相变过程中,带隙随压强的增加呈现非单调变化的规律,即第1次相变带隙增大,而第2次相变带隙减小。
图
7R3m、Pnma和Pmmn相的能带结构和电子态密度
Figure
7.
Band structures and partial densities of states of R3m, Pnma and Pmmn phases
GAO C Y, ZHANG L C, GUO W G, et al. Dynamic plasticity of AZ31 magnesium alloy: experimental investigation and constitutive modeling [J]. Materials Science and Engineering A, 2014, 613: 379–389. doi: 10.1016/j.msea.2014.06.112
HU C M, LI Y L, HU S S, et al. Dynamic mechanical properties and deformation mechanical of MB2 alloy under high temperature and high strain rates [J]. Ordnance Material Science and Engineering, 2009, 32(5): 8–11 doi: 10.3969/j.issn.1004-244X.2009.05.003
[3]
SCHMIDT R M, DAVIES F W, LEMPRIERE B M, et al. Temperature dependent spall threshold of four metal alloys [J]. Journal of Physics and Chemistry of Solids, 1978, 39(4): 375–385. doi: 10.1016/0022-3697(78)90079-3
[4]
MILLETT J C F, STIRK S M, BOURNE N K, et al. On the behaviour of the magnesium alloy, AZ61 to one-dimensional shock loading [J]. Acta Materialia, 2010, 58(17): 5675–5682. doi: 10.1016/j.actamat.2010.06.042
[5]
MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980: 208.
[6]
YU Y Y, TAN H, HU J B, et al. Shear modulus of shock-compressed LY12 aluminium up to melting point [J]. Chinese Physics B, 2008, 17(1): 264–269. doi: 10.1088/1674-1056/17/1/046
HU J B, TAN H, YU Y Y, et al. Measurements of dynamic yield strength of aluminum alloy and mechanism analysis of elastic precursor during reloading [J]. Acta Physica Sinica, 2008, 57(1): 405–410 doi: 10.3321/j.issn:1000-3290.2008.01.063
TAN Y, YU Y Y, DAI C D, et al. Measurement of low-pressure Hugoniot data for bismuth with reverse-impact geometry [J]. Acta Physica Sinica, 2011, 60(10): 106401 doi: 10.7498/aps.60.106401
YU Y Y, TAN Y, DAI C D, et al. Sound velocities of vanadium under shock compression [J]. Acta Physica Sinica, 2014, 63(2): 026202
[10]
WENG J D, TAN H, WANG X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution [J]. Applied Physics Letters, 2006, 89(11): 111101. doi: 10.1063/1.2335948
[11]
谭华. 实验冲击波物理导 [M]. 北京: 国防工业出版社, 2006: 5.
TAN H. Introduction to experimental shock-wave physics [M]. Beijing: National Defense Industry Press, 2006: 5.
[12]
RIGG P A, KNUDSON M D, SCHARFF R J, et al. Determining the refractive index of shocked [J]. Journal of Applied Physics, 2014, 116(3): 033515. doi: 10.1063/1.4890714
[13]
URTIEW P A, GROVER R. The melting temperature of magnesium under shock loading [J]. Journal of Applied Physics, 1977, 48(3): 1122–1126. doi: 10.1063/1.323789
[14]
徐锡申, 张万箱. 实用物态方程理论导引 [M]. 北京: 科学出版社, 1986: 527.
XU X S, ZHANG W X. Introduction to equation of state theory [M]. Beijing: National Defense Industry Press, 1986: 527.
[15]
WU Q, JING F Q. Thermodynamic equation of state and application to Hugoniot predictions for porous materials [J]. Journal of Applied Physics, 1996, 80(8): 4343–4349. doi: 10.1063/1.363391
WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776